RESUMEN
Dextran dextrinase (DDase) catalyzes formation of the polysaccharide dextran from maltodextrin. During the synthesis of dextran, DDase also generates the beneficial material isomaltomegalosaccharide (IMS). The term megalosaccharide is used for a saccharide having DP = 10-100 or 10-200 (DP, degree of polymerization). IMS is a chimeric glucosaccharide comprising α-(1 â 6)- and α-(1 â 4)-linked portions at the nonreducing and reducing ends, respectively, in which the α-(1 â 4)-glucosyl portion originates from maltodextrin of the substrate. In this study, IMS was produced by a practical approach using extracellular DDase (DDext) or cell surface DDase (DDsur) of Gluconobacter oxydans ATCC 11894. DDsur was the original form, so we prepared DDext via secretion from intact cells by incubating with 0.5% G6/G7 (maltohexaose/maltoheptaose); this was followed by generation of IMS from various concentrations of G6/G7 substrate at different temperatures for 96 h. However, IMS synthesis by DDext was limited by insufficient formation of α-(1 â 6)-glucosidic linkages, suggesting that DDase also catalyzes elongation of α-(1 â 4)-glucosyl chain. For production of IMS using DDsur, intact cells bearing DDsur were directly incubated with 20% G6/G7 at 45 °C by optimizing conditions such as cell concentration and agitation efficiency, which resulted in generation of IMS (average DP = 14.7) with 61% α-(1 â 6)-glucosyl content in 51% yield. Increases in substrate concentration and agitation efficiency were found to decrease dextran formation and increase IMS production, which improved the reaction conditions for DDext. Under modified conditions (20% G6/G7, agitation speed of 100 rpm at 45 °C), DDext produced IMS (average DP = 14.5) with 65% α-(1 â 6)-glucosyl content in a good yield of 87%. KEY POINTS: ⢠Beneficial IMS was produced using thermostabilized DDase. ⢠Optimum conditions for reduced dextran formation were successfully determined. ⢠A practical approach was established to provide IMS with a great yield of 87%.
Asunto(s)
Gluconobacter oxydans , Membrana Celular , Gluconobacter oxydans/genética , Glucósidos , GlucosiltransferasasRESUMEN
This research screened for α-amylase inhibitory activity of twenties-five varieties Thai indigenous rice seeds. Based on specific inhibition, crude protein of var. Gai Ngaw (Gs. No. 13719) was selected for purification. The unbound proteins of the Q-Sepharose column named partially purified rice α-amylase inhibitor (RAI) revealed MW of approximately 14.4 kDa. The RAI was stable at pH 4 to 7 and heat stable up to 80 °C. The RAI had IC50 of 15.92 ± 1.08 µg/ml. The double reciprocal plot implied a mixed-type inhibitor. The Dixon and Cornish-Bowden plots were used to estimate Ki and αKi. This suggested Thai indigenous rice seeds could potentially be developed as a food supplement for blood sugar and weight controls.
RESUMEN
Culture broth of Ganoderma lucidum was determined for antioxidant, antibacterial and α-amylase inhibitory activities. The culture broth contained protein as determined by Bradford method equaled to 0.2 mg/ml and total phenol content as 0.078 mg GAE/mg protein (0.557 mg GAE/g extract). It exhibited radicals scavenging activities against ABTS+· and DPPH· radicals with a half maximal inhibitory concentration (IC50) less than 1.70 ± 0.02 and 2.28 ± 0.02 µg protein/ml, respectively and reducing power equaled to 4.38 ± 0.02 µmol Trolox/µg protein as investigated by ferric ion reducing antioxidant power method. The culture broth experimented into two approached; (1) treated with pronase and (2) filtered through a membrane with 10 kDa molecular weight cut-off (MWCO). The pronase-treated culture broth exhibited insignificant lower antioxidant activities, but the retained culture broth 10 kDa MWCO resulted in significant decrease in antioxidant activities suggesting that the small proteins might play the key role in antioxidant activity. The culture broth could protect DNA damage from hydroxyl radicals (·OH) generated by Fenton's reaction. This culture broth showed antibacterial activity towards pathogenic strains Staphylococcus epidermidis and Pseudomonas aeruginosa and also had an interesting α-amylase inhibitory activity. This study suggested that apart from the fruiting bodies and the mycelial of G. lucidum, its culture broth also had potential applications as a value-added ingredient in the product such as in cosmetics and in nutraceuticals.
RESUMEN
Defensins form an antimicrobial peptides (AMP) family, and have been widely studied in various plants because of their considerable inhibitory functions. However, their roles in rice (Oryza sativa L.) have not been characterized, even though rice is one of the most important staple crops that is susceptible to damaging infections. Additionally, a previous study identified 598 rice genes encoding cysteine-rich peptides, suggesting there are several uncharacterized AMPs in rice. We performed in silico gene expression and coexpression network analyses of all genes encoding defensin and defensin-like peptides, and determined that OsDEF7 and OsDEF8 are coexpressed with pathogen-responsive genes. Recombinant OsDEF7 and OsDEF8 could form homodimers. They inhibited the growth of the bacteria Xanthomonas oryzae pv. oryzae, X. oryzae pv. oryzicola, and Erwinia carotovora subsp. atroseptica with minimum inhibitory concentration (MIC) ranging from 0.6 to 63µg/mL. However, these OsDEFs are weakly active against the phytopathogenic fungi Helminthosporium oryzae and Fusarium oxysporum f.sp. cubense. This study describes a useful method for identifying potential plant AMPs with biological activities.
Asunto(s)
Defensinas/genética , Oryza/genética , Péptidos/genética , Enfermedades de las Plantas/genética , Antiinfecciosos/aislamiento & purificación , Simulación por Computador , Cisteína/genética , Defensinas/aislamiento & purificación , Fusarium/genética , Fusarium/patogenicidad , Regulación de la Expresión Génica de las Plantas , Helminthosporium/genética , Helminthosporium/patogenicidad , Oryza/microbiología , Péptidos/aislamiento & purificación , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Xanthomonas/genética , Xanthomonas/patogenicidadRESUMEN
Crude proteins of cultured mycelia and fruiting bodies of Ganoderma lucidum were investigated for antioxidant, antibacterial and DNA protective activities. It was found that the half maximal inhibitory concentration (IC50) of the mycelia protein and fruiting bodies protein extracts against 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) radical (ABTS(â¢+)) were 2.47 ± 0.01 and 2.77 ± 0.11 µg protein/ml and against 2,2-diphenylpicrylhydrazyl radical (DPPH(â¢)) were 2.5 ± 0.01 and 3.42 ± 0.01 µg protein/ml, respectively. The ferric reducing-antioxidant power (FRAP) values of those samples were 1.73 ± 0.01 and 2.62 ± 0.01 µmole trolox/µg protein respectively. Protein hydrolysates prepared by pronase exhibited a weaker antioxidant activity. Both crude proteins showed antibacterial activity, whereas only the mycelia protein extract could protect DNA damage by hydroxyl ((â¢)OH) radicals. This protein extract was partial purified by Diethyl amino ethyl (DEAE)-Sepharose column and Sulfopropyl (SP)-Sepharose column, obtained major protein with molecular weight about 45 kilo Dalton (kDa). In conclusion, G. lucidum protein extracts have promise potential for applications as antioxidant and antibacterial agents.
RESUMEN
Melanins are complex natural pigments that darken the skin and are difficult to degrade. This study evaluated synthetic melanin decolorization by the crude laccase from fungus Lentinus polychrous in the absence and presence of selected redox mediators. The greatest melanin decolorization activity was 87 % at pH 6.5 within 3 h in the presence of 2,2-azinobis (3-ethylbenzothiazoline-6-sulfonate) diammonium salt (ABTS), whereas only about 22 % melanin decolorized at pH 5.0 in case of no mediator. The optimum temperatures for melanin decolorization in the absence and presence of ABTS were 55 and 35°C, respectively. Using a natural redox mediator, 1.0 mmol/L vanillin leads to 45 % melanin decolorization. Our results suggest the possibility of applying vanillin for L. polychrous laccase-catalyzed decolorization of melanin.
Asunto(s)
Lacasa/metabolismo , Lentinula/enzimología , Melaninas/metabolismo , Benzaldehídos/farmacología , Color , Concentración de Iones de Hidrógeno , Melaninas/farmacología , Oxidación-Reducción , TemperaturaRESUMEN
This study reports the antioxidant and antibacterial activities of four fresh mango seed extracts from Thai varieties. Total phenol contents determined by the Folin-ciocalteu method revealed the highest values to be in MKE, Chok-a-nan variety (399.8 mgGAE/g extract) and MSE of Nam-dok-mai variety (377.2 mgGAE/g extract). Both extracts showed potent ABTSË+ radical and DPPHË radical scavenging activities with the lower half inhibition concentration (IC50) values than those of the reference compounds; vitamin C, trolox and BHA, respectively. Their antioxidant property of MSE and MKE is strongly correlated with the total phenol contents (r=0.98 and 0.98, respectively). When combined the MSE and MKE of the Fah-lun variety showed the strongest antioxidant activity. All mango seed extracts showed interesting antibacterial activity against both gram positive and gram negative bacteria as determined by disc diffusion method. The most sensitive pathogenic strain inhibited by all extracts (especially Kaew variety) was Pseudomonas aeruginosa ATCC 27853. This work suggests potential applications for practical uses of mango seed extracts from Thai varieties, as sources of antioxidant and antibacterial agents.
Asunto(s)
Antibacterianos/farmacología , Antioxidantes/farmacología , Mangifera/química , Ácido Ascórbico/química , Bacterias/efectos de los fármacos , Benzotiazoles/química , Compuestos de Bifenilo/química , Cromanos/química , Difusión , Depuradores de Radicales Libres/química , Indicadores y Reactivos , Pruebas de Sensibilidad Microbiana , Fenoles/análisis , Picratos/química , Extractos Vegetales/farmacología , Semillas/química , Ácidos Sulfónicos/química , TailandiaRESUMEN
We have compared the ability of beta-glucosidases from cassava, Thai rosewood, and almond to synthesize alkyl glucosides by transglucosylating alkyl alcohols of chain length C(1)-C(8). Cassava linamarase shows greater ability to transfer glucose from p-nitrophenyl-beta-glucoside to secondary alcohol acceptors than other beta-glucosidases, and is unique in being able to synthesize C(4), C(5), and C(6) tertiary alkyl beta-glucosides with high yields of 94%, 82%, and 56%, respectively. Yields of alkyl glucosides could be optimized by selecting appropriate enzyme concentrations and incubation times. Cassava linamarase required pNP-glycosides as donors and could not use mono- or di-saccharides as sugar donors in alkyl glucoside synthesis.