Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Interdiscip Sci ; 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39167285

RESUMEN

The kidney is an abdominal organ in the human body that supports filtering excess water and waste from the blood. Kidney diseases generally occur due to changes in certain supplements, medical conditions, obesity, and diet, which causes kidney function and ultimately leads to complications such as chronic kidney disease, kidney failure, and other renal disorders. Combining patient metadata with computed tomography (CT) images is essential to accurately and timely diagnosing such complications. Deep Neural Networks (DNNs) have transformed medical fields by providing high accuracy in complex tasks. However, the high computational cost of these models is a significant challenge, particularly in real-time applications. This paper proposed SpinalZFNet, a hybrid deep learning approach that integrates the architectural strengths of Spinal Network (SpinalNet) with the feature extraction capabilities of Zeiler and Fergus Network (ZFNet) to classify kidney disease accurately using CT images. This unique combination enhanced feature analysis, significantly improving classification accuracy while reducing the computational overhead. At first, the acquired CT images are pre-processed using a median filter, and the pre-processed image is segmented using Efficient Neural Network (ENet). Later, the images are augmented, and different features are extracted from the augmented CT images. The extracted features finally classify the kidney disease into normal, tumor, cyst, and stone using the proposed SpinalZFNet model. The SpinalZFNet outperformed other models, with 99.9% sensitivity, 99.5% specificity, precision 99.6%, 99.8% accuracy, and 99.7% F1-Score in classifying kidney disease.

2.
PLoS One ; 19(5): e0303094, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38768222

RESUMEN

In response to the growing number of diabetes cases worldwide, Our study addresses the escalating issue of diabetic eye disease (DED), a significant contributor to vision loss globally, through a pioneering approach. We propose a novel integration of a Genetic Grey Wolf Optimization (G-GWO) algorithm with a Fully Convolutional Encoder-Decoder Network (FCEDN), further enhanced by a Kernel Extreme Learning Machine (KELM) for refined image segmentation and disease classification. This innovative combination leverages the genetic algorithm and grey wolf optimization to boost the FCEDN's efficiency, enabling precise detection of DED stages and differentiation among disease types. Tested across diverse datasets, including IDRiD, DR-HAGIS, and ODIR, our model showcased superior performance, achieving classification accuracies between 98.5% to 98.8%, surpassing existing methods. This advancement sets a new standard in DED detection and offers significant potential for automating fundus image analysis, reducing reliance on manual examination, and improving patient care efficiency. Our findings are crucial to enhancing diagnostic accuracy and patient outcomes in DED management.


Asunto(s)
Algoritmos , Retinopatía Diabética , Aprendizaje Automático , Humanos , Retinopatía Diabética/genética , Retinopatía Diabética/diagnóstico , Procesamiento de Imagen Asistido por Computador/métodos , Redes Neurales de la Computación
3.
Heliyon ; 9(4): e15407, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37123955

RESUMEN

Computer science graduates face a massive gap between industry-relevant skills and those learned at school. Industry practitioners often counter a huge challenge when moving from academics to industry, requiring a completely different set of skills and knowledge. It is essential to fill the gap between the industry's required skills and those taught at varsities. In this study, we leverage deep learning and big data to propose a framework that maps the required skills with those acquired by computing graduates. Based on the mapping, we recommend enhancing the computing curriculum to match the industry-relevant skills. Our proposed framework consists of four layers: data, embedding, mapping, and a curriculum enhancement layer. Based on the recommendations from the mapping module, we made revisions and modifications to the computing curricula. Finally, we perform a case study of the Norwegian IT jobs market, where we make recommendations for data science and software engineering-related jobs. We argue that by using our proposed methodology and analysis, a significant enhancement in the computing curriculum is possible to help increase employability, student satisfaction, and smart decision-making.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...