Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Phys Chem Lett ; 15(30): 7620-7627, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39029245

RESUMEN

We examined the effects of trimethylamine N-oxide (TMAO) and urea (known osmolytes) on the liquid-liquid phase separation (LLPS) of fused in sarcoma (FUS) and three FUS-LLPS states: LLPS states at atmospheric pressure with low- and high-salt concentrations and a re-entrant LLPS state above 2 kbar. Temperature- and pressure-scan turbidity measurements revealed that TMAO and urea contributed to stabilizing and destabilizing LLPS, respectively. These results can be attributed to the excluded volume effect of TMAO (preferential hydration) and preferential interaction of urea with proteins. Additionally, TMAO counteracted the effects of equimolar urea on LLPS, a phenomenon not previously reported. The concept of the m-value for osmolyte-induced protein folding and unfolding can be applied to the osmolyte's effects on LLPS. In conclusion, biomolecular LLPS can be modulated by preferential hydration and the interaction of small osmolytes with proteins, thereby facilitating LLPS formation, even in extreme environments characterized by high-salt, high-urea, and high-pressure conditions.


Asunto(s)
Metilaminas , Separación de Fases , Urea , Metilaminas/química , Pliegue de Proteína , Proteínas/química , Temperatura , Urea/química , Agua/química
2.
Sci Rep ; 14(1): 8914, 2024 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-38632300

RESUMEN

Intracellular aggregation of fused in sarcoma (FUS) is associated with the pathogenesis of familial amyotrophic lateral sclerosis (ALS). Under stress, FUS forms liquid droplets via liquid-liquid phase separation (LLPS). Two types of wild-type FUS LLPS exist in equilibrium: low-pressure LLPS (LP-LLPS) and high-pressure LLPS (HP-LLPS); the former dominates below 2 kbar and the latter over 2 kbar. Although several disease-type FUS variants have been identified, the molecular mechanism underlying accelerated cytoplasmic granule formation in ALS patients remains poorly understood. Herein, we report the reversible formation of the two LLPS states and the irreversible liquid-solid transition, namely droplet aging, of the ALS patient-type FUS variant R495X using fluorescence microscopy and ultraviolet-visible absorption spectroscopy combined with perturbations in pressure and temperature. Liquid-to-solid phase transition was accelerated in the HP-LLPS of R495X than in the wild-type variant; arginine slowed the aging of droplets at atmospheric conditions by inhibiting the formation of HP-LLPS more selectively compared to that of LP-LLPS. Our findings provide new insight into the mechanism by which R495X readily forms cytoplasmic aggregates. Targeting the aberrantly formed liquid droplets (the HP-LLPS state) of proteins with minimal impact on physiological functions could be a novel therapeutic strategy for LLPS-mediated protein diseases.


Asunto(s)
Esclerosis Amiotrófica Lateral , Proteína FUS de Unión a ARN , Sarcoma , Humanos , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Transición de Fase , Proteína FUS de Unión a ARN/genética , Proteína FUS de Unión a ARN/metabolismo
3.
Yakugaku Zasshi ; 142(9): 1015-1020, 2022.
Artículo en Japonés | MEDLINE | ID: mdl-36047213

RESUMEN

We previously designed the formulation containing minoxidil (MXD) nanoparticles (MXD-NPs), and found that the MXD-NPs can mainly deliver MXD into hair bulbs via hair follicles pathway, and that the therapeutic efficiency for hair growth is higher in comparison with the formulation containing dissolved MXD. In this study, we investigated whether the skin environmental changes by the treatment of steam towel, ethanol, l-menthol and commercially available (CA) carpronium affect the drug behavior in the MXD-NPs-applied mice. The steam towel, ethanol, l-menthol and CA-carpronium were pre-treated 3 min before MXD-NPs application, and the MXD content in the hair bulge, bulb, skin tissue and blood of mice were measured 4 h after MXD-NPs application. No significant difference of MXD levels in the blood was observed by the pre-treatment of steam towel, ethanol, l-menthol and CA-carpronium. On the other hand, the pre-treatment of steam towel and l-menthol enhanced the MXD levels in hair bulge and/or bulb. Although, the MXD levels in hair bulge and bulb were not changed by the pre-treatment of ethanol, the MXD levels in skin tissue was higher than that of saline-pre-treated group (control). The MXD levels in hair bulge, bulb and skin tissue of mice pre-treated with CA-carpronium were remarkably higher in comparison with control. In conclusion, we showed that the changes in skin environment by the steam towel, ethanol, l-menthol and CA-carpronium affected the absorption of MXD-NPs, and these increased MXD levels in the hair bulb and blood by the combination may enhance the therapeutic efficiency without side effects.


Asunto(s)
Minoxidil , Nanopartículas , Animales , Etanol , Mentol , Ratones , Minoxidil/farmacología , Vapor , Ácido gamma-Aminobutírico/análogos & derivados
4.
Pharmaceutics ; 14(5)2022 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-35631533

RESUMEN

We previously found that 1% minoxidil (MXD) nanoparticles prepared using a bead mill method led to an increase I n hair follicle delivery and hair growth in C57BL/6 mice. In the present study, we designed a nanoparticle formulation containing 5% MXD (MXD-NPs) using the bead mill method and investigated the hair-growth effect of MXD-NPs and a commercially available MXD solution (CA-MXD). Hair growth and in vivo permeation studies were conducted using C57BL/6 mice. Moreover, we examined the MXD contents in the upper (hair bulge) and the lower hair follicle (hair bulb) and observed the hair follicle epithelial stem cells (HFSC) by immunohistochemical staining using the CD200 antibody. The mean particle size of the MXD in the MXD-NPs was 139.8 nm ± 8.9 nm. The hair-growth effect of the MXD-NPs was higher than that of CA-MXD, and the MXD content in the hair bulge of mice treated with MXD-NPs was 7.4-fold that of the mice treated with CA-MXD. In addition, the activation of HFSC was observed around the bulge in the MXD-NPs-treated mice. We showed that MXD-NPs enable the accumulation of MXD in the upper hair follicles more efficiently than CA-MXD, leading the activation of HFSC and the hair growth.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...