Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
J Phys Chem Lett ; 15(37): 9335-9341, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39236264

RESUMEN

The hopping charge transfer (CT) theory is used to explain the dynamics of traditional donor-acceptor (D-A) devices in organic solar cells (OSCs). But it is not applicable to the unconventional OSCs inspired by photosynthesis, referred to as Z-devices. In this study, we establish a universal heterojunction CT model in OSCs, based on the reported coherent CT in photosynthesis. Compared to the trade-off between energy loss and charge generation efficiency in the D-A device, we analyze its change in the Z-device. We introduce the "avalanche-like" CT of the Z-device induced by many-body Coulomb interaction and relevant experimental support. Combining with the Shockley-Queisser theory, we evaluate the theory limit power conversion efficiency of a D-A device and a Z-device. The Z-device has the potential to surpass the Shockley-Queisser limit of 33%.

2.
Jpn J Ophthalmol ; 68(5): 482-489, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38985404

RESUMEN

PURPOSE: To determine whether there is a significant association between inflammatory cytokines in the tear fluid and the severity of Retinopathy of Prematurity (ROP). STUDY DESIGN: Retrospective cohort study. METHODS: The cytokine levels in tear fluids were determined in 34 eyes with ROP and 18 eyes without ROP. There were 15 eyes with severe ROP requiring treatment and 19 eyes with mild ROP not requiring treatment. For severe ROP eyes, tear fluids were collected before treatment. RESULTS: Significantly higher levels of CCL2 and vascular endothelial growth factor (VEGF) were detected in eyes with severe ROP compared to eyes with mild ROP and no ROP. When assessed for cytokine levels that discriminate each disease group, CCL2 showed a significant odds ratio of 1.76 for severity change (/quintile, P = 0.032, after adjusting for birth weight). Correlation analysis showed that birth weight correlated with IL-1α levels, and decreased weight gain increased IFN-γ levels. We next determined tear fluid cytokines which discriminate severe ROP using receiver operating characteristics' analysis. We found that combination of higher CCL2 levels, higher VEGF levels, and lower IFN-γ levels in the tear fluid had a stronger predictive value for severe ROP (area under curve, 0.85). CONCLUSION: The levels of CCL2, VEGF, and IFN-γ in tear fluid may serve as useful biomarkers for assessing the severity of ROP.


Asunto(s)
Biomarcadores , Citocinas , Edad Gestacional , Retinopatía de la Prematuridad , Índice de Severidad de la Enfermedad , Lágrimas , Humanos , Retinopatía de la Prematuridad/diagnóstico , Retinopatía de la Prematuridad/metabolismo , Recién Nacido , Lágrimas/metabolismo , Lágrimas/química , Estudios Retrospectivos , Masculino , Femenino , Citocinas/metabolismo , Biomarcadores/metabolismo , Curva ROC , Factor A de Crecimiento Endotelial Vascular/metabolismo , Quimiocina CCL2/metabolismo , Peso al Nacer , Ensayo de Inmunoadsorción Enzimática
3.
Photochem Photobiol ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38953399

RESUMEN

Aiming at the application to photodynamic therapy, natural bacteriochlorophyll-a was converted to chemically stable free-base derivatives possessing different kinds of hydrophilic C17-propionate residues. These semi-synthetic bacteriochlorins were found to have self-assembling ability in an aqueous environment and formed stable J-type aggregates in a cell culture medium containing 0.2% DMSO. The electronic absorption spectra of all the sensitizers showed Qy absorption maxima at 754 nm in DMSO as their monomeric states, while a drastic shift of the red-most bands to ca. 880 nm was observed in the aqueous medium. The circular dichroism spectra in the medium showed much intense signals compared to those measured in DMSO, supporting the formation of well-ordered supramolecular structures. By introducing hydrophilic side chains, the bacteriochlorin sensitizers could be dispersed in the aqueous medium as their J-aggregates without the use of any surfactants. Cellular uptake efficiencies as well as photodynamic activities were evaluated using human cervical adenocarcinoma HeLa cells. Among the 11 photosensitizers investigated, the best result was obtained for a charged derivative possessing trimethylammonium terminal (17-CH2CH2COOCH2CH2N+(CH3)3I-) and photocytotoxicity of EC50 = 0.09 µM was achieved by far-red light illumination of 35 J/cm2 from an LED panel (730 nm).

4.
Small ; 20(1): e2304463, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37649191

RESUMEN

The high activity of water molecules results in a series of awful parasitic reaction, which seriously impede the development of aqueous zinc batteries. Herein, a new gel electrolyte with multiple molecular anchors is designed by employing natural biomaterials from chitosan and chlorophyll derivative. The gel electrolyte firmly anchors water molecules by ternary hydrogen bonding to reduce the activity of water molecules and inhibit hydrogen evolution reaction. Meanwhile, the multipolar charged functional groups realize the gradient induction and redistribution of Zn2+ , which drives oriented Zn (002) plane deposition of Zn2+ and then achieves uniform Zn deposition and dendrite-free anode. As a result, it endows the Zn||Zn cell with over 1700 h stripping/plating processes and a high efficiency of 99.4% for the Zn||Cu cell. In addition, the Zn||V2 O5 full cells also exhibit capacity retention of 81.7% after 600 cycles at 0.5 A g-1 and excellent long-term stability over 1600 cycles at 2 A g-1 , and the flexible pouch cells can provide stable power for light-emitting diodes even after repeated bending. The gel electrolyte strategy provides a reference for reversible zinc anode and flexible wearable devices.

5.
Small ; 20(4): e2305484, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37712145

RESUMEN

Hole-transporting layers (HTLs) play a crucial role in the performance of inverted, p-i-n perovskite solar cells (PSCs). Chlorophylls (Chls) are naturally abundant organic photoconductors on earth, with good charge carrier mobility and appropriate Fermi energy levels that make them promising candidates for use in photovoltaic devices. However, Chls films prepared using the solution method exhibit lower carrier mobility compared to other organic polymer films, which limits their application in PSCs. To address this issue, Chls molecules are chemically linked to reduce the charge transfer barrier, thus the transfer of charges between molecules is transformed to intramolecular charge transfer. This study synthesizes and characterizes two polymerized Chl films, PolyCuChl and PolyNiChl, as HTLs of CH3 NH3 PbI3 -based PSCs. PSCs based on the electrochemical polymerization of PolyChl HTLs demonstrate an enhanced power conversion efficiency (PCE) of up to 19.0%, which is the highest efficiency among devices based on Chl materials. Furthermore, these devices demonstrated exceptional long-term stability. These results highlight the potential of polymerized Chl films as a viable alternative to conventional HTLs in PSCs. The approach utilizes abundant, environmentally friendly, and versatile Chl derivatives, and can be extended to develop next-generation HTL materials for improved PSC performance.

6.
Jpn J Ophthalmol ; 68(1): 70-81, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37947908

RESUMEN

PURPOSE: To estimate the roles of extracellular vesicles (EVs) in tears and to determine whether their profiles are associated with the type of ocular disease. STUDY DESIGN: Cross-sectional study. METHODS: Tear EVs were extracted from 14 healthy participants and from 21 patients with retinal diseases (age-related macular degeneration [AMD] or diabetic macular edema [DME]). The surface marker expression of tear EVs was examined, and microRNAs (miRNAs) were extracted and profiled by use of real-time PCR array. The stability of the expression of the miRNAs was determined, and their functions were assessed by network analyses. Classification accuracy was evaluated by use of a random forest classifier and k-fold cross-validation. RESULTS: The miRNAs that were highly expressed in tear EVs were miR-323-3p, miR-548a-3p, and miR-516a-5p. The most stably expressed miRNAs independent of diseases were miR-520h and miR-146b-3p. The primary networks of the highly stably expressed endogenous miRNAs were annotated as regulation of organismal injury and abnormalities. The highly expressed miRNAs for severe retinal disease were miR-151-5p for AMD and miR-422a for DME, suggesting potential roles of tear EVs in liquid biopsy. Nine miRNAs (miR-25, miR-30d, miR-125b, miR-132, miR-150, miR-184, miR-342-3p, miR-378, and miR-518b) were identified as distinguishing individuals with AMD from healthy individuals with a classification accuracy of 91.9%. CONCLUSIONS: The finding that tear EVs contain characteristic miRNA species indicates that they may help in maintaining homeostasis and serve as a potential tool for disease diagnosis.


Asunto(s)
Retinopatía Diabética , Vesículas Extracelulares , Edema Macular , MicroARNs , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Proyectos Piloto , Retinopatía Diabética/diagnóstico , Retinopatía Diabética/genética , Retinopatía Diabética/metabolismo , Estudios Transversales , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo
7.
J Phys Chem Lett ; 14(46): 10469-10474, 2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-37967024

RESUMEN

In this study, we fabricated a photodetector (PD) with two types of chlorophyll derivatives, namely, zinc methyl 3-devinyl-3-hydroxymethyl-pyropheophorbide-a (ZnChl) and methyl 131-deoxo-131-dicyanomethylene-pyropheophorbide-a (H2Chl'), via a two-step drop-coating process. In the absorption range of ZnChl/H2Chl' films, the maximum external quantum efficiency of ZnChl/H2Chl'-based devices reached 1363% at -8 V and 1345% at 2.5 V, exhibiting the photomultiplication (PM) phenomenon. The PM phenomenon of ZnChl/H2Chl'-based devices is attributed to hole tunneling injection from the external circuit assisted by electron accumulation in the ZnChl and H2Chl' under light illumination. Through the investigation of the responsivity (R) of ZnChl/H2Chl'-based devices, it has been found that achieving a high R is easier under forward bias compared with reverse bias (7706 mA/W at -8 V and 7629 mA/W at 2.5 V). The organic PDs based on ZnChl/H2Chl' exhibit PM behavior, offering a promising approach to improve the device's responsivity.

8.
Nano Lett ; 23(12): 5722-5730, 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37314735

RESUMEN

The organic electrolyte can resolve the hurdle of hydrogen evolution in aqueous electrolytes but suffers from sluggish electrochemical reaction kinetics due to a compromised mass transfer process. Herein, we introduce a chlorophyll, zinc methyl 3-devinyl-3-hydroxymethyl-pyropheophorbide-a (Chl), as a multifunctional electrolyte additive for aprotic zinc batteries to address the related dynamic problems in organic electrolyte systems. The Chl exhibits multisite zincophilicity, which significantly reduces the nucleation potential, increases the nucleation sites, and induces uniform nucleation of Zn metal with a nucleation overpotential close to zero. Furthermore, the lower LUMO of Chl contributes to a Zn-N-bond-containing SEI layer and inhibits the decomposition of the electrolyte. Therefore, the electrolyte enables repeated zinc stripping/plating up to 2000 h (2 Ah cm-2 cumulative capacity) with an overpotential of only 32 mV and a high Coulomb efficiency of 99.4%. This work is expected to enlighten the practical application of organic electrolyte systems.

10.
Sci Rep ; 13(1): 1152, 2023 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-36670145

RESUMEN

The purpose of this study was to identify the inflammatory cytokines that were associated with pachychoroid neovasculopathy (PNV). Seventy-five eyes of 75 patients with PNV, 145 eyes of 145 patients with neovascular age-related macular degeneration without pachyvessels, and 150 eyes of 150 normal subjects were examined for the levels of intraocular cytokines. In eyes with PNV, the levels of IL-1α, IL-1ß, IL-2, IL-4, IL-10, and VEGF were significantly higher than that of the controls. Logistic regression analysis showed that the highest association with the pachyvessels was found for IL-4, IL-2, and IL-1α. In eyes with PNV, the levels of IL-4, IL-2, IL-5, IL-13, IL-1α, and IL-1ß were significantly higher in eyes with both increased choroidal thickness and choroidal vessel diameter. The strongest correlation with the choroidal thickness and vessel diameter was observed for IL-4. In PNV eyes with polypoidal lesions, the levels of IL-4, IL-17, and TNFß were significantly correlated with the number of polypoidal lesions. Of these cytokines, IL-4 was especially associated with the thickness of the choroidal vessels and the formation of polypoidal lesions. We conclude that IL-4 is most likely involved in establishing the clinical characteristics of PNV and polypoidal vascular remodeling.


Asunto(s)
Neovascularización Coroidal , Interleucina-4 , Humanos , Coroides/irrigación sanguínea , Neovascularización Coroidal/patología , Citocinas , Angiografía con Fluoresceína , Interleucina-2 , Estudios Retrospectivos , Tomografía de Coherencia Óptica
11.
J Colloid Interface Sci ; 633: 218-225, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36446214

RESUMEN

MXenes, a new family of 2D nanostructured materials, have been widely studied in the field of artificial photosynthesis due to their outstanding physicochemical properties. In this work, a series of 2,4-bis[4-(N,N-dibutylamino)phenyl] squaraine (SQ) derivatives with different number of hydroxyl groups were hybridized with Ti3C2Tx MXene nanosheets, and the organic-inorganic hybrid photocatalysts were applied for water-splitting hydrogen evolution. The mass ratios of SQ@Ti3C2Tx were optimized to 4 wt% for each SQ, and the best hydrogen evolution reaction (HER) rate of 28.6 µmol h-1 g-1 was achieved by SQ-3 with four OH groups. The photocatalytic ability of the hybrid comes from the outstanding light harvesting of SQ dye, sufficient active sites of Ti3C2Tx, and efficient separation and transfer of the photogenerated charges via heterojunction between SQ aggregates and Ti3C2Tx. This work firstly demonstrates an example of SQ sensitizer combined with MXene for hydrogen generation, which provides a new insight to further explore the MXene-based hybrid nanomaterials for water splitting hydrogen evolution.


Asunto(s)
Ciclobutanos , Titanio , Hidrógeno
12.
Chemistry ; 28(56): e202201855, 2022 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-35779267

RESUMEN

Hydrogen energy is an abundant, clean, sustainable and environmentally friendly renewable energy source. Therefore, the production of hydrogen by photocatalytically splitting water on semiconductors has been considered in recent years as a promising and sustainable strategy for converting solar energy into chemical energy to replace conventional energy sources and to solve the growing problem of environmental pollution and the global energy crisis. However, highly efficient solar-driven photocatalytic hydrogen production remains a huge challenge due to the poor visible light response of available photocatalytic materials and the low efficiency of separation and transfer of photogenerated electron-hole pairs. In the present work, organic heterojunction structures based on bacteriochlorophyll (BChl) and chlorophyll (Chl) molecules were introduced and used for solar-driven photocatalytic hydrogen production from water under visible light. Also, noble metal-free photocatalyst was successfully constructed on Ti3 C2 Tx nanosheets by simple successive deposition of Chl and BChl, which was used for the photocatalytic splitting water to hydrogen evolution reaction (HER). The results show that the optimal BChl@Chl@Ti3 C2 Tx composite has a high HER performance with 114 µmol/h/gcat , which is much higher than the BChl@Ti3 C2 Tx and Chl@Ti3 C2 Tx composites.


Asunto(s)
Bacterioclorofilas , Procesos Fotoquímicos , Catálisis , Clorofila , Hidrógeno/química , Agua/química
13.
Sci Rep ; 12(1): 5419, 2022 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-35354878

RESUMEN

Ocular cytomegalovirus (CMV) infections in immunocompetent individuals are rare, but its activation can cause chronic and relapsing inflammation in anterior segment of the eye resulting in loss of corneal clarity and glaucoma. Fifty five patients with anterior segment CMV infection were assessed for their clinical characteristics, and CMV corneal endotheliitis was found to cause significant loss of corneal endothelial cells. The disease duration with recurrences was significantly correlated with the maximum intraocular level of CMV DNA. To examine why CMV is activated in healthy immunocompetent individuals and causing corneal endothelial cell damage, assays of cytotoxic T cells (CTLs) which directly target infected corneal endothelial cells were performed for 9 HLA-matched CMV corneal endotheliitis patients (HLA-A*2402). When the cell loss was analyzed for associations with CTL responses, CMV-induced endothelial cell damage was mitigated by pp65-specific CTL induction. The recurrence-free time was also prolonged by pp65-specific CTL induction (hazard ratio (HR): 0.93, P = 0.01). In contrast, IE1-specific CTL was associated with endothelial cell damage and reduced the time for corneal transplantation (HR: 1.6, P = 0.003) and glaucoma surgery (HR: 1.5, P = 0.001). Collectively, induction of pp65-specific CTL was associated with improved visual prognosis. However, IE1-specific CTL without proper induction of pp65-specific CTL can cause pathological damage leading to the need of surgical interventions.


Asunto(s)
Citomegalovirus , Linfocitos T Citotóxicos , Antivirales , Citomegalovirus/genética , Células Endoteliales , Humanos , Pronóstico
14.
Sci Rep ; 11(1): 22642, 2021 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-34811468

RESUMEN

Corneal opacities are important causes of blindness, and their major etiology is infectious keratitis. Slit-lamp examinations are commonly used to determine the causative pathogen; however, their diagnostic accuracy is low even for experienced ophthalmologists. To characterize the "face" of an infected cornea, we have adapted a deep learning architecture used for facial recognition and applied it to determine a probability score for a specific pathogen causing keratitis. To record the diverse features and mitigate the uncertainty, batches of probability scores of 4 serial images taken from many angles or fluorescence staining were learned for score and decision level fusion using a gradient boosting decision tree. A total of 4306 slit-lamp images including 312 images obtained by internet publications on keratitis by bacteria, fungi, acanthamoeba, and herpes simplex virus (HSV) were studied. The created algorithm had a high overall accuracy of diagnosis, e.g., the accuracy/area under the curve for acanthamoeba was 97.9%/0.995, bacteria was 90.7%/0.963, fungi was 95.0%/0.975, and HSV was 92.3%/0.946, by group K-fold validation, and it was robust to even the low resolution web images. We suggest that our hybrid deep learning-based algorithm be used as a simple and accurate method for computer-assisted diagnosis of infectious keratitis.


Asunto(s)
Aprendizaje Profundo , Queratitis/diagnóstico , Queratitis/microbiología , Queratitis/parasitología , Queratitis/virología , Microscopía con Lámpara de Hendidura/métodos , Lámpara de Hendidura , Anciano , Algoritmos , Opacidad de la Córnea , Técnicas de Diagnóstico Oftalmológico , Femenino , Humanos , Masculino , Persona de Mediana Edad , Oftalmología/métodos , Probabilidad , Reproducibilidad de los Resultados
15.
J Am Chem Soc ; 143(5): 2207-2211, 2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-33522803

RESUMEN

The power conversion efficiency (PCE) of Cs2AgBiBr6-based perovskite solar cells (PSCs) is still low owing to the inherent defects of Cs2AgBiBr6 films. Herein, we demonstrate a carboxy-chlorophyll derivative (C-Chl)-sensitized mesoporous TiO2 (m-TiO2) film as an electron transport layer (ETL) to enhance and extend the absorption spectrum of Cs2AgBiBr6-based PSCs. The C-Chl-based device achieves a significantly improved PCE, exceeding 3% for the first time, with an increase of 27% in short-circuit current density. Optoelectronic investigations confirm that the introduction of C-Chl reduces the defects, accelerates the electron extraction, and suppresses charge recombination at the interface of ETL/perovskite. Moreover, the unencapsulated PSCs display restrained hysteresis and great stability under ambient conditions.

16.
Jpn J Ophthalmol ; 65(3): 423-431, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33634367

RESUMEN

PURPOSE: To analyze the epidemiologic characteristics of an outbreak of human adenovirus type 54 (HAdV-54) on Oki Island, Shimane Prefecture, Japan, in 2017 and to assess the effectiveness of a compartmentalization method in controlling the incidence and spread. STUDY DESIGN: Retrospective cohort study. METHODS: The infection was diagnosed in 136 individuals, and typing was confirmed by PCR and direct sequencing. The epidemiologic characteristics of the disease including the infection rate, incubation period, and basic reproductive number (R0), ie, number of cases directly infected by an infectious patient during the course of the disease, were investigated. The effectiveness of compartmentalization for infection control was determined by simulating the outbreak using the Susceptible-Exposed-Infectious-Recovered (SEIR) model. RESULTS: The majority of the HAdV-54-infected individuals were the children of 3 nursery schools (A, B, and C) and their parents on Oki Island. The infection rates in the 3 schools were 13.2%, 16.9%, and 17.2%, respectively. The one class of school B without the index case was initially compartmentalized, and the infection rate in this compartment was 0%. The incubation period was calculated to be 9.3 ± 3.5 days, and the disease duration, 13.0 ± 5.4 days. The R0 was 1.43. Using these parameters, a SEIR model was constructed. The SEIR model well predicted the daily incidence of infection and indicated that the compartmentalization method provides effective reduction in the incidence of the infection, with much earlier control. CONCLUSIONS: The compartmentalization method is effective to control HAdV-54 outbreaks.


Asunto(s)
Infecciones por Adenovirus Humanos , Queratoconjuntivitis , Adenoviridae , Infecciones por Adenovirus Humanos/diagnóstico , Infecciones por Adenovirus Humanos/epidemiología , Infecciones por Adenovirus Humanos/prevención & control , Niño , Brotes de Enfermedades , Humanos , Japón/epidemiología , Queratoconjuntivitis/diagnóstico , Queratoconjuntivitis/epidemiología , Queratoconjuntivitis/prevención & control , Estudios Retrospectivos
17.
Chemistry ; 27(16): 5277-5282, 2021 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-33438792

RESUMEN

The Z-scheme process is a photoinduced electron-transfer pathway in natural oxygenic photosynthesis involving electron transport from photosystem II (PSII) to photosystem I (PSI). Inspired by the interesting Z-scheme process, herein a photocatalytic hydrogen evolution reaction (HER) employing chlorophyll (Chl) derivatives, Chl-1 and Chl-2, on the surface of Ti3 C2 Tx MXene with two-dimensional accordion-like morphology, forming Chl-1@Chl-2@Ti3 C2 Tx composite, is demonstrated. Due to the frontier molecular orbital energy alignments of Chl-1 and Chl-2, sublayer Chl-1 is a simulation of PSI, whereas upper layer Chl-2 is equivalent to PSII, and the resultant electron transport can take place from Chl-2 to Chl-1. Under the illumination of visible light (>420 nm), the HER performance of Chl-1@Chl-2@Ti3 C2 Tx photocatalyst was found to be as high as 143 µmol h-1 gcat -1 , which was substantially higher than that of photocatalysts of either Chl-1@Ti3 C2 Tx (20 µmol h-1 g-1 ) or Chl-2@Ti3 C2 Tx (15 µmol h-1 g-1 ).


Asunto(s)
Clorofila , Titanio , Hidrógeno , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo
18.
Commun Chem ; 4(1): 118, 2021 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-36697644

RESUMEN

Chlorophyll (Chl) derivatives have recently been proposed as photoactive materials in next-generation bio-inspired solar cells, because of their natural abundance, environmental friendliness, excellent photoelectric performance, and biodegradability. However, the intrinsic excitation dynamics of Chl derivatives remain unclear. Here, we show sub-nanosecond pump-probe time-resolved absorption spectroscopy of Chl derivatives both in solution and solid film states. We observe the formation of triplet-excited states of Chl derivatives both in deoxygenated solutions and in film samples by adding all-trans-ß-carotene as a triplet scavenger. In addition, radical species of the Chl derivatives in solution were identified by adding hydroquinone as a cation radical scavenger and/or anion radical donor. These radical species (either cations or anions) can become carriers in Chl-derivative-based solar cells. Remarkably, the introduction of hydroquinone to the film samples enhanced the carrier lifetimes and the power conversion efficiency of Chl-based solar cells by 20% (from pristine 1.29% to 1.55%). This enhancement is due to a charge recombination process of Chl-A+/Chl-D-, which is based on the natural Z-scheme process of photosynthesis.

19.
Sci Rep ; 10(1): 18477, 2020 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-33097832

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

20.
Sci Rep ; 10(1): 12595, 2020 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-32724150

RESUMEN

Acanthamoeba can cause visually destructive Acanthamoeba keratitis (AK) in contact lens (CL) users. The purpose of this study was to determine whether Acanthamoeba was present in the CL cases of CL wearers and to develop techniques to prevent the contaminations. To accomplish this, 512 CL case samples were collected from 305 healthy CL wearers. Using real-time PCR, Acanthamoeba DNA was detected in 19.1% of CL cases, however their presence was not directly associated with poor CL case care. Instead, the presence of Acanthamoeba DNA was associated with significant levels of many different bacterial species. When the CL cases underwent metagenomic analysis, the most abundant bacterial orders were Enterobacteriales followed by Burkholderiales, Pseudomonadales, and Flavobacteriales. The presence of Acanthamoeba was characterized by Propionibacterium acnes and Rothia aeria and was also associated with an increase in the α diversity. Collectively, Acanthamoeba contamination occurs when a diversified bacterial flora is present in CL cases. This can effectively be prevented by careful and thorough CL case care.


Asunto(s)
Acanthamoeba/aislamiento & purificación , Lentes de Contacto/microbiología , Acanthamoeba/genética , Adulto , ADN Bacteriano/genética , Femenino , Humanos , Higiene , Masculino , Persona de Mediana Edad , Reacción en Cadena de la Polimerasa , Factores de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...