Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 152
Filtrar
1.
Chem Commun (Camb) ; 60(77): 10716-10719, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39239792

RESUMEN

We present a novel synthesis method for producing stable titanium dioxide nanoparticles (<10 nm) dispersed in hydrophobic solvents using organophosphates. Our approach enables the control of nanoparticles' electric field responsiveness by altering the dispersing medium's composition, expanding their potential applications in electronics, photovoltaics, and photocatalysis.

2.
Nat Commun ; 15(1): 7289, 2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39181879

RESUMEN

Voltage-sensing phosphatase (VSP) exhibits voltage-dependent phosphatase activity toward phosphoinositides. VSP generates a specialized phosphoinositide environment in mammalian sperm flagellum. However, the voltage-sensing mechanism of VSP in spermatozoa is not yet characterized. Here, we found that VSP is activated during sperm maturation, indicating that electric signals in immature spermatozoa are essential. Using a heterologous expression system, we show the voltage-sensing property of mouse VSP (mVSP). The voltage-sensing threshold of mVSP is approximately -30 mV, which is sensitive enough to activate mVSP in immature spermatozoa. We also report several knock-in mice in which we manipulate the voltage-sensitivity or electrochemical coupling of mVSP. Notably, the V312R mutant, with a minor voltage-sensitivity change, exhibits abnormal sperm motility after, but not before, capacitation. Additionally, the V312R mutant shows a significant change in the acyl-chain profile of phosphoinositide. Our findings suggest that electrical signals during sperm maturation are crucial for establishing the optimal phosphoinositide environment in spermatozoa.


Asunto(s)
Fosfatidilinositoles , Monoéster Fosfórico Hidrolasas , Motilidad Espermática , Espermatozoides , Animales , Masculino , Espermatozoides/metabolismo , Espermatozoides/fisiología , Fosfatidilinositoles/metabolismo , Ratones , Motilidad Espermática/fisiología , Monoéster Fosfórico Hidrolasas/metabolismo , Monoéster Fosfórico Hidrolasas/genética , Capacitación Espermática/fisiología , Técnicas de Sustitución del Gen , Humanos , Mutación
3.
Life Sci Alliance ; 7(9)2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38906678

RESUMEN

H3.1 histone is predominantly synthesized and enters the nucleus during the G1/S phase of the cell cycle, as a new component of duplicating nucleosomes. Here, we found that p53 is necessary to secure the normal behavior and modification of H3.1 in the nucleus during the G1/S phase, in which p53 increases C-terminal domain nuclear envelope phosphatase 1 (CTDNEP1) levels and decreases enhancer of zeste homolog 2 (EZH2) levels in the H3.1 interactome. In the absence of p53, H3.1 molecules tended to be tethered at or near the nuclear envelope (NE), where they were predominantly trimethylated at lysine 27 (H3K27me3) by EZH2, without forming nucleosomes. This accumulation was likely caused by the high affinity of H3.1 toward phosphatidic acid (PA). p53 reduced nuclear PA levels by increasing levels of CTDNEP1, which activates lipin to convert PA into diacylglycerol. We moreover found that the cytosolic H3 chaperone HSC70 attenuates the H3.1-PA interaction, and our molecular imaging analyses suggested that H3.1 may be anchored around the NE after their nuclear entry. Our results expand our knowledge of p53 function in regulation of the nuclear behavior of H3.1 during the G1/S phase, in which p53 may primarily target nuclear PA and EZH2.


Asunto(s)
Núcleo Celular , Proteína Potenciadora del Homólogo Zeste 2 , Histonas , Proteína p53 Supresora de Tumor , Histonas/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Núcleo Celular/metabolismo , Humanos , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Fase G1 , Fase S , Membrana Nuclear/metabolismo , Metilación , Animales , Nucleosomas/metabolismo
4.
Biochem Biophys Res Commun ; 718: 149981, 2024 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-38735134

RESUMEN

In animal cells, vacuoles are absent, but can be induced by diseases and drugs. While phosphoinositides are critical for membrane trafficking, their role in the formation of these vacuoles remains unclear. The immunosuppressive KRP203/Mocravimod, which antagonizes sphingosine-1-phosphate receptors, has been identified as having novel multimodal activity against phosphoinositide kinases. However, the impact of this novel KRP203 activity is unknown. Here, we show that KRP203 disrupts the spatial organization of phosphoinositides and induces extensive vacuolization in tumor cells and immortalized fibroblasts. The KRP203-induced vacuoles are primarily from endosomes, and augmented by inhibition of PIKFYVE and VPS34. Conversely, overexpression of PTEN decreased KRP203-induced vacuole formation. Furthermore, V-ATPase inhibition completely blunted KRP203-induced vacuolization, pointing to a critical requirement of the endosomal maturation process. Importantly, nearly a half of KRP203-induced vacuoles are significantly decorated with PI4P, a phosphoinositide typically enriched at the plasma membrane and Golgi. These results suggest a model that noncanonical spatial reorganization of phosphoinositides by KRP203 alters the endosomal maturation process, leading to vacuolization. Taken together, this study reveals a previously unrecognized bioactivity of KRP203 as a vacuole-inducing agent and its unique mechanism of phosphoinositide modulation, providing a new insight of phosphoinositide regulation into vacuolization-associated diseases and their molecular pathologies.


Asunto(s)
Endosomas , Fosfohidrolasa PTEN , Fosfatidilinositoles , Vacuolas , Vacuolas/metabolismo , Vacuolas/efectos de los fármacos , Endosomas/metabolismo , Endosomas/efectos de los fármacos , Humanos , Fosfatidilinositoles/metabolismo , Animales , Fosfohidrolasa PTEN/metabolismo , Fosfohidrolasa PTEN/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Fosfatidilinositol 3-Quinasas Clase III/genética , Ratones , Morfolinas/farmacología , ATPasas de Translocación de Protón Vacuolares/metabolismo , ATPasas de Translocación de Protón Vacuolares/antagonistas & inhibidores , ATPasas de Translocación de Protón Vacuolares/genética , Citoplasma/metabolismo , Células HeLa , Aminopiridinas , Compuestos Heterocíclicos con 3 Anillos
5.
Mol Cell ; 83(16): 2991-3009.e13, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37567175

RESUMEN

The PIP3/PI3K network is a central regulator of metabolism and is frequently activated in cancer, commonly by loss of the PIP3/PI(3,4)P2 phosphatase, PTEN. Despite huge research investment, the drivers of the PI3K network in normal tissues and how they adapt to overactivation are unclear. We find that in healthy mouse prostate PI3K activity is driven by RTK/IRS signaling and constrained by pathway feedback. In the absence of PTEN, the network is dramatically remodeled. A poorly understood YXXM- and PIP3/PI(3,4)P2-binding PH domain-containing adaptor, PLEKHS1, became the dominant activator and was required to sustain PIP3, AKT phosphorylation, and growth in PTEN-null prostate. This was because PLEKHS1 evaded pathway-feedback and experienced enhanced PI3K- and Src-family kinase-dependent phosphorylation of Y258XXM, eliciting PI3K activation. hPLEKHS1 mRNA and activating Y419 phosphorylation of hSrc correlated with PI3K pathway activity in human prostate cancers. We propose that in PTEN-null cells receptor-independent, Src-dependent tyrosine phosphorylation of PLEKHS1 creates positive feedback that escapes homeostasis, drives PIP3 signaling, and supports tumor progression.


Asunto(s)
Fosfohidrolasa PTEN , Neoplasias de la Próstata , Animales , Humanos , Masculino , Ratones , Homeostasis , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Próstata/patología , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo
6.
Dis Model Mech ; 16(7)2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37415561

RESUMEN

Phosphoinositides (PIPs) act as intracellular signaling molecules that regulate various cellular processes. Abnormalities in PIP metabolism cause various pathological conditions, including neurodegenerative diseases, cancer and immune disorders. Several neurological diseases with diverse phenotypes, such as ataxia with cerebellar atrophy or intellectual disability without brain malformation, are caused by mutations in INPP4A, which encodes a phosphoinositide phosphatase. We examined two strains of Inpp4a mutant mice with distinct cerebellar phenotypes: the Inpp4aΔEx1,2 mutant exhibited striatal degeneration without cerebellar atrophy, and the Inpp4aΔEx23 mutant exhibited a severe striatal phenotype with cerebellar atrophy. Both strains exhibited reduced expression of Inpp4a mutant proteins in the cerebellum. N-terminal-truncated Inpp4a proteins were expressed from the Inpp4aΔEx1,2 allele by alternative translation initiation and had phosphatase activity for PI(3,4)P2, whereas the Inpp4a mutant protein encoded by Inpp4aΔEx23 completely lacked phosphatase activity. Our results indicate that the diverse phenotypes observed in Inpp4a-related neurological diseases could be due to the varying protein expression levels and retained phosphatase activity in different Inpp4a variants. These findings provide insights into the role of INPP4A mutations in disease pathogenesis and may help to develop personalized therapy.


Asunto(s)
Cerebelo , Monoéster Fosfórico Hidrolasas , Transducción de Señal , Animales , Ratones , Atrofia/patología , Cerebelo/patología , Fenotipo , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo
7.
Neuropsychopharmacol Rep ; 43(3): 403-413, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37498306

RESUMEN

AIMS: Schizophrenia is a chronic relapsing psychiatric disorder that is characterized by many symptoms and has a high heritability. There were studies showing that the phospholipid abnormalities in subjects with schizophrenia (Front Biosci, S3, 2011, 153; Schizophr Bull, 48, 2022, 1125; Sci Rep, 7, 2017, 6; Anal Bioanal Chem, 400, 2011, 1933). Disturbances in prefrontal cortex phospholipid and fatty acid composition have been reported in subjects with schizophrenia (Sci Rep, 7, 2017, 6; Anal Bioanal Chem, 400, 2011, 1933; Schizophr Res, 215, 2020, 493; J Psychiatr Res, 47, 2013, 636; Int J Mol Sci, 22, 2021). For exploring the signaling pathways contributing to the lipid changes in previous study (Sci Rep, 7, 2017, 6), we performed two types of transcriptome analyses in subjects with schizophrenia: an unbiased transcriptome analysis solely based on RNA-seq data and a correlation analysis between levels of gene expression and lipids. METHODS: RNA-Seq analysis was performed in the postmortem prefrontal cortex from 10 subjects with schizophrenia and 5 controls. Correlation analysis between the transcriptome and lipidome from 9 subjects, which are the same samples in the previous lipidomics study (Sci Rep, 7, 2017, 6). RESULTS: Extraction of differentially expressed genes (DEGs) and further sequence and functional group analysis revealed changes in gene expression levels in phosphoinositide 3-kinase (PI3K)-Akt signaling and the complement system. In addition, a correlation analysis clarified alterations in ether lipid metabolism pathway, which is not found as DEGs in transcriptome analysis alone. CONCLUSIONS: This study provided results of the integrated analysis of the schizophrenia-associated transcriptome and lipidome within the PFC and revealed that lipid-correlated alterations in the transcriptome are enriched in specific pathways including ether lipid metabolism pathway.


Asunto(s)
Fosfolípidos , Corteza Prefrontal , Esquizofrenia , Transcriptoma , Humanos , Pueblos del Este de Asia , Éteres/metabolismo , Metabolismo de los Lípidos/genética , Fosfatidilinositol 3-Quinasas/análisis , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfolípidos/análisis , Fosfolípidos/genética , Fosfolípidos/metabolismo , Corteza Prefrontal/química , Corteza Prefrontal/metabolismo , Esquizofrenia/genética , Esquizofrenia/metabolismo , Autopsia
8.
iScience ; 26(4): 106375, 2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37035000

RESUMEN

The genetic associations of TREM2 loss-of-function variants with Alzheimer disease (AD) indicate the protective roles of microglia in AD pathogenesis. Functional deficiencies of TREM2 disrupt microglial clustering around amyloid ß (Aß) plaques, impair their transcriptional response to Aß, and worsen neuritic dystrophy. However, the molecular mechanism underlying these phenotypes remains unclear. In this study, we investigated the pathological role of another AD risk gene, INPP5D, encoding a phosphoinositide PI(3,4,5)P3 phosphatase expressed in microglia. In a Tyrobp-deficient TREM2 loss-of-function mouse model, Inpp5d haplodeficiency restored the association of microglia with Aß plaques, partially restored plaque compaction, and astrogliosis, and reduced phosphorylated tau+ dystrophic neurites. Mechanistic analyses suggest that TREM2/TYROBP and INPP5D exert opposing effects on PI(3,4,5)P3 signaling pathways as well as on phosphoproteins involved in the actin assembly. Our results suggest that INPP5D acts downstream of TREM2/TYROBP to regulate the microglial barrier against Aß toxicity, thereby modulates Aß-dependent pathological conversion of tau.

10.
Cell Rep ; 42(3): 112157, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36882059

RESUMEN

Body temperature in homeothermic animals does not remain constant but displays a regular circadian fluctuation within a physiological range (e.g., 35°C-38.5°C in mice), constituting a fundamental systemic signal to harmonize circadian clock-regulated physiology. Here, we find the minimal upstream open reading frame (uORF) encoded by the 5' UTR of the mammalian core clock gene Per2 and reveal its role as a regulatory module for temperature-dependent circadian clock entrainment. A temperature shift within the physiological range does not affect transcription but instead increases translation of Per2 through its minimal uORF. Genetic ablation of the Per2 minimal uORF and inhibition of phosphoinositide-3-kinase, lying upstream of temperature-dependent Per2 protein synthesis, perturb the entrainment of cells to simulated body temperature cycles. At the organismal level, Per2 minimal uORF mutant skin shows delayed wound healing, indicating that uORF-mediated Per2 modulation is crucial for optimal tissue homeostasis. Combined with transcriptional regulation, Per2 minimal uORF-mediated translation may enhance the fitness of circadian physiology.


Asunto(s)
Relojes Circadianos , Ratones , Animales , Relojes Circadianos/genética , Ritmo Circadiano/fisiología , Sistemas de Lectura Abierta/genética , Temperatura Corporal , Regulación de la Expresión Génica , Mamíferos/metabolismo , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo
11.
Genes Cells ; 27(10): 602-612, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36054428

RESUMEN

Bladder cancer (BlC) is the fourth most common cancer in males worldwide, but few systemic chemotherapy options for its effective treatment exist. The development of new molecularly-targeted agents against BlC is therefore an urgent issue. The Hippo signaling pathway, with its upstream LATS kinases and downstream transcriptional co-activators YAP1 and TAZ, plays a pivotal role in diverse cell functions, including cell proliferation. Recent studies have shown that overexpression of YAP1 occurs in advanced BlCs and is associated with poor patient prognosis. Accessing data from our previous screening of a chemical library of compounds targeting the Hippo pathway, we identified DMPCA (N-(3,4-dimethoxyphenethyl)-6-methyl-2,3,4,9-tetrahydro-1H-carbazol-1-amine) as an agent able to induce the phosphorylation of LATS1 and YAP1/TAZ in BlC cells, thereby suppressing their viability both in vitro and in mouse xenografts. Our data indicate that DMPCA has a potent anti-tumor effect, and raise the possibility that this agent may represent a new and effective therapeutic option for BlC.


Asunto(s)
Neoplasias de la Vejiga Urinaria , Animales , Humanos , Masculino , Ratones , Aciltransferasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Aminas , Carbazoles , Proteínas Serina-Treonina Quinasas , Transducción de Señal/fisiología , Factores de Transcripción/metabolismo , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Proteínas Señalizadoras YAP
12.
Cell Rep ; 40(12): 111388, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-36130497

RESUMEN

Planar cell polarity (PCP) regulates the orientation of external structures. A core group of proteins that includes Frizzled forms the heart of the PCP regulatory system. Other PCP mechanisms that are independent of the core group likely exist, but their underlying mechanisms are elusive. Here, we show that tissue flow is a mechanism governing core group-independent PCP on the Drosophila notum. Loss of core group function only slightly affects bristle orientation in the adult central notum. This near-normal PCP results from tissue flow-mediated rescue of random bristle orientation during the pupal stage. Manipulation studies suggest that tissue flow can orient bristles in the opposite direction to the flow. This process is independent of the core group and implies that the apical extracellular matrix functions like a "comb" to align bristles. Our results reveal the significance of cooperation between tissue dynamics and extracellular substances in PCP establishment.


Asunto(s)
Polaridad Celular , Proteínas de Drosophila , Animales , Polaridad Celular/fisiología , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Receptores Frizzled/metabolismo , Pupa/metabolismo
13.
Reprod Med Biol ; 21(1): e12472, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35765371

RESUMEN

Purpose: Penile research is expected to reveal new targets for treatment and prevention of the complex mechanisms of its disorder including erectile dysfunction (ED). Thus, analyses of the molecular processes of penile ED and continuous erection as priapism are essential issues of reproductive medicine. Methods: By performing mouse N-ethyl-N-nitrosourea mutagenesis and exome sequencing, we established a novel mouse line displaying protruded genitalia phenotype (PGP; priapism-like phenotype) and identified a novel Pitpna gene mutation for PGP. Extensive histological analyses on the Pitpna mutant and intracavernous pressure measurement (ICP) and liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI/MS)/MS analyses were performed. Results: We evaluated the role of phospholipids during erection for the first time and showed the mutants of inducible phenotypes of priapism. Moreover, quantitative analysis using LC-ESI/MS/MS revealed that the level of phosphatidylinositol (PI) was significantly lower in the mutant penile samples. These results imply that PI may contribute to penile erection by PITPα. Conclusions: Our findings suggest that the current mutant is a mouse model for priapism and abnormalities in PI signaling pathways through PITPα may lead to priapism providing an attractive novel therapeutic target in its treatment.

14.
Nat Commun ; 13(1): 2347, 2022 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-35534464

RESUMEN

Epithelial cells provide cell-cell adhesion that is essential to maintain the integrity of multicellular organisms. Epithelial cell-characterizing proteins, such as epithelial junctional proteins and transcription factors are well defined. However, the role of lipids in epithelial characterization remains poorly understood. Here we show that the phospholipid phosphatidylinositol (4,5)-bisphosphate [PI(4,5)P2] is enriched in the plasma membrane (PM) of epithelial cells. Epithelial cells lose their characteristics upon depletion of PM PI(4,5)P2, and synthesis of PI(4,5)P2 in the PM results in the development of epithelial-like morphology in osteosarcoma cells. PM localization of PARD3 is impaired by depletion of PM PI(4,5)P2 in epithelial cells, whereas expression of the PM-targeting exocyst-docking region of PARD3 induces osteosarcoma cells to show epithelial-like morphological changes, suggesting that PI(4,5)P2 regulates epithelial characteristics by recruiting PARD3 to the PM. These results indicate that a high level of PM PI(4,5)P2 plays a crucial role in the maintenance of epithelial characteristics.


Asunto(s)
Osteosarcoma , Fosfatidilinositoles , Adhesión Celular , Membrana Celular/metabolismo , Humanos , Fosfatos de Inositol/metabolismo , Osteosarcoma/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatidilinositoles/metabolismo
15.
ACS Appl Mater Interfaces ; 14(16): 18464-18475, 2022 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-35426658

RESUMEN

Aldol reactions (self- and cross-aldol condensations) for conjugated enone synthesis were efficiently performed on large-sized Cs+ single sites (1 wt %) confined in ß-zeolite channels in toluene, which showed the highest level of catalytic aldol condensation activity among reported zeolite catalysts. In general, aldol condensation reactions for C-C bond synthesis can proceed by acids (e.g., H+), bases (e.g., OH-), enolate species, and acidic or basic solid catalysts. However, the Cs+ single site/ß sample without significant acid-base property showed unprecedented, efficient, and reusable catalysis for self-aldol and cross-aldol condensations. Intrinsically inactive Cs+ single sites due to the noble-gas electronic structure were transformed to active Cs+ single sites in ß-zeolite channels. Cs+/ß has many advantages such as broad substrate scope, eco-friendliness, high product selectivity and yield, and simple work-up procedure. Thus, the Cs+ single site/ß provides an attractive and useful methodology for practical C-C bond synthesis. On the basis of the Cs+/ß characterization by X-ray photoelectron spectroscopy (XPS), in situ X-ray absorption fine structure (XAFS) (X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS)), and temperature-programmed desorption (TPD), density functional theory (DFT) calculations of the self- and cross-aldol condensation reaction pathways involving the transition states on the Cs+ single site in ß-zeolite channel revealed nontraditional concerted interligand bond rearrangement mechanisms.

16.
J Chem Phys ; 156(4): 044202, 2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35105097

RESUMEN

The hydration structure of cellulose is very important for understanding the hydrolysis of cellulose at the molecular level. In this paper, we report a joint experimental and theoretical study on x-ray absorption spectroscopy (XAS) of aqueous cellobiose, a disaccharide unit of cellulose. In the experimental part, high resolution measurements of the carbon K-edge XAS spectra were taken. In the theoretical part, ab initio molecular dynamics simulations and ensemble calculations of electronic excited states were performed to obtain the continuous XAS spectra. The XAS spectra were found to have three characteristic peaks at 289.3, 290.7, and 293.6 eV, each representing the absorption by carbon atoms of the alcohol group, the hemiacetal group, and both of these functional groups. It was found that the peak heights in the spectrum change considerably over the temperature range of 25-60 °C, which is a reflection of the number of hydrogen bonds between cellobiose and water. We suggest that this spectral change could be useful information for identifying the hydration of cellulose in various environments.

17.
Mol Biol Cell ; 33(3): ar26, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35020443

RESUMEN

Transcriptional factor EB (TFEB) is a master regulator of genes required for autophagy and lysosomal function. The nuclear localization of TFEB is blocked by the mechanistic target of rapamycin complex 1 (mTORC1)-dependent phosphorylation of TFEB at multiple sites including Ser-211. Here we show that inhibition of PIKfyve, which produces phosphatidylinositol 3,5-bisphosphate on endosomes and lysosomes, causes a loss of Ser-211 phosphorylation and concomitant nuclear localization of TFEB. We found that while mTORC1 activity toward S6K1, as well as other major mTORC1 substrates, is not impaired, PIKfyve inhibition specifically impedes the interaction of TFEB with mTORC1. This suggests that mTORC1 activity on TFEB is selectively inhibited due to loss of mTORC1 access to TFEB. In addition, we found that TFEB activation during inhibition of PIKfyve relies on the ability of protein phosphatase 2A (PP2A) but not calcineurin/PPP3 to dephosphorylate TFEB Ser-211. Thus when PIKfyve is inhibited, PP2A is dominant over mTORC1 for control of TFEB phosphorylation at Ser-S211. Together these findings suggest that mTORC1 and PP2A have opposing roles on TFEB via phosphorylation and dephosphorylation of Ser-211, respectively, and further that PIKfyve inhibits TFEB activity by facilitating mTORC1-dependent phosphorylation of TFEB.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Proteína Fosfatasa 2 , Autofagia/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Lisosomas/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Fosforilación , Proteína Fosfatasa 2/metabolismo
18.
Nat Commun ; 13(1): 83, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-35013169

RESUMEN

Phosphoinositides are a family of membrane lipids essential for many biological and pathological processes. Due to the existence of multiple phosphoinositide regioisomers and their low intracellular concentrations, profiling these lipids and linking a specific acyl variant to a change in biological state have been difficult. To enable the comprehensive analysis of phosphoinositide phosphorylation status and acyl chain identity, we develop PRMC-MS (Phosphoinositide Regioisomer Measurement by Chiral column chromatography and Mass Spectrometry). Using this method, we reveal a severe skewing in acyl chains in phosphoinositides in Pten-deficient prostate cancer tissues, extracellular mobilization of phosphoinositides upon expression of oncogenic PIK3CA, and a unique profile for exosomal phosphoinositides. Thus, our approach allows characterizing the dynamics of phosphoinositide acyl variants in intracellular and extracellular milieus.


Asunto(s)
Fosfatidilinositol 3-Quinasa Clase I/genética , Metaboloma , Fosfohidrolasa PTEN/genética , Fosfatidilinositoles/metabolismo , Neoplasias de la Próstata/metabolismo , Animales , Cromatografía de Afinidad , Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Factor de Crecimiento Epidérmico/farmacología , Exosomas/química , Exosomas/metabolismo , Expresión Génica , Células HEK293 , Células HeLa , Humanos , Masculino , Espectrometría de Masas , Ratones , Células PC-3 , Fosfohidrolasa PTEN/deficiencia , Fosfatidilinositoles/química , Fosfatidilinositoles/clasificación , Fosfatidilinositoles/aislamiento & purificación , Próstata/química , Próstata/efectos de los fármacos , Próstata/patología , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Pirimidinas/farmacología , Quinazolinas/farmacología , Estereoisomerismo
19.
J Cell Biol ; 221(1)2022 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-34817532

RESUMEN

Membrane contact sites (MCSs) serve as a zone for nonvesicular lipid transport by oxysterol-binding protein (OSBP)-related proteins (ORPs). ORPs mediate lipid countertransport, in which two distinct lipids are transported counterdirectionally. How such lipid countertransport controls specific biological functions, however, remains elusive. We report that lipid countertransport by ORP10 at ER-endosome MCSs regulates retrograde membrane trafficking. ORP10, together with ORP9 and VAP, formed ER-endosome MCSs in a phosphatidylinositol 4-phosphate (PI4P)-dependent manner. ORP10 exhibited a lipid exchange activity toward its ligands, PI4P and phosphatidylserine (PS), between liposomes in vitro, and between the ER and endosomes in situ. Cell biological analysis demonstrated that ORP10 supplies a pool of PS from the ER, in exchange for PI4P, to endosomes where the PS-binding protein EHD1 is recruited to facilitate endosome fission. Our study highlights a novel lipid exchange at ER-endosome MCSs as a nonenzymatic PI4P-to-PS conversion mechanism that organizes membrane remodeling during retrograde membrane trafficking.


Asunto(s)
Retículo Endoplásmico/metabolismo , Endosomas/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatidilserinas/metabolismo , Receptores de Esteroides/metabolismo , Células HEK293 , Células HeLa , Humanos , Membranas Intracelulares , Ligandos , Liposomas , Dominios Proteicos , Receptor IGF Tipo 2/metabolismo , Receptores de Esteroides/química , Proteínas de Transporte Vesicular/metabolismo
20.
J Comput Chem ; 42(25): 1783-1791, 2021 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-34245044

RESUMEN

Sugar alcohol dehydration in hot water is an important reaction that allows for environmentally friendly biomass conversion without the use of organic solvents. Here, we report a free-energy analysis by metadynamics (MTD) simulations based on ab initio density functional theory and semiempirical density-functional tight-binding method to understand the mechanism of dehydration reactions of d-sorbitol (SBT) in hot acidic water. Comparing the results of ab initio and semiempirical MTD, it was found that the latter gives a reliable free energy surface of SBT dehydration reaction, although the results vary upon the inclusion of dispersion correction. It was found that the reaction proceeds consistently via an SN 2 mechanism, whereby the free energy of protonation of the hydroxyl group created as an intermediate is affected by the acidic species. This mechanism was further verified by real-time trajectories started from the transition state using ab initio molecular dynamics simulations. The free energy barriers of the reaction pathways leading to five-membered ether products are lower than those leading to six-membered ether products, in agreement with experiment. This outcome can be ascribed, in part, to our finding that the reaction barrier of the pathway is correlated to the stability of the SBT confined conformation at the initial stage of the reaction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...