RESUMEN
RNA-DNA hybrid is a part of the R-loop which is an important non-standard nucleic acid structure. RNA-DNA hybrid/R-loop causes genomic instability by inducing DNA damages or inhibiting DNA replication. It also plays biologically important roles in regulation of transcription, replication, recombination and repair. Here, we have employed catalytically inactive human RNase H1 mutant (D145N) to visualize RNA-DNA hybrids and map their genomic locations in fission yeast cells. The RNA-DNA hybrids appear as multiple nuclear foci in rnh1∆rnh201∆ cells lacking cellular RNase H activity, but not in the wild-type. The majority of RNA-DNA hybrid loci are detected at the protein coding regions and tRNA. In rnh1∆rnh201∆ cells, cells with multiple Rad52 foci increase during S-phase and about 20% of the RNA-DNA hybrids overlap with Rad52 loci. During S-phase, more robust association of Rad52 with RNA-DNA hybrids was observed in the protein coding region than in M-phase. These results suggest that persistent RNA-DNA hybrids in the protein coding region in rnh1∆rnh201∆ cells generate DNA damages during S-phase, potentially through collision with DNA replication forks.
RESUMEN
REV7 is an abundant, multifunctional protein that is a known factor in cell cycle regulation and in several key DNA repair pathways including Trans-Lesion Synthesis (TLS), the Fanconi Anemia (FA) pathway, and DNA Double-Strand Break (DSB) repair pathway choice. Thus far, no direct role has been studied for REV7 in the DNA damage response (DDR) signaling pathway. Here we describe a novel function for REV7 in DSB-induced p53 signaling. We show that REV7 binds directly to p53 to block ATM-dependent p53 Ser15 phosphorylation. We also report that REV7 is involved in the destabilization of p53. These findings affirm REV7's participation in fundamental cell cycle and DNA repair pathways. Furthermore, they highlight REV7 as a critical factor for the integration of multiple processes that determine viability and genome stability.
Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada , Daño del ADN , Transducción de Señal , Proteína p53 Supresora de Tumor , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Humanos , Fosforilación , Roturas del ADN de Doble Cadena , Unión Proteica , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Línea Celular TumoralRESUMEN
Acetaldehyde, a chemical that can cause DNA damage and contribute to cancer, is prevalently present in our environment, e.g. in alcohol, tobacco, and food. Although aldehyde potentially promotes crosslinking reactions among biological substances including DNA, RNA, and protein, it remains unclear what types of DNA damage are caused by acetaldehyde and how they are repaired. In this study, we explored mechanisms involved in the repair of acetaldehyde-induced DNA damage by examining the cellular sensitivity to acetaldehyde in the collection of human TK6 mutant deficient in each genome maintenance system. Among the mutants, mismatch repair mutants did not show hypersensitivity to acetaldehyde, while mutants deficient in base and nucleotide excision repair pathways or homologous recombination (HR) exhibited higher sensitivity to acetaldehyde than did wild-type cells. We found that acetaldehyde-induced RAD51 foci representing HR intermediates were prolonged in HR-deficient cells. These results indicate a pivotal role of HR in the repair of acetaldehyde-induced DNA damage. These results suggest that acetaldehyde causes complex DNA damages that require various types of repair pathways. Mutants deficient in the removal of protein adducts from DNA ends such as TDP1-/- and TDP2-/- cells exhibited hypersensitivity to acetaldehyde. Strikingly, the double mutant deficient in both TDP1 and RAD54 showed similar sensitivity to each single mutant. This epistatic relationship between TDP1-/- and RAD54-/- suggests that the protein-DNA adducts generated by acetaldehyde need to be removed for efficient repair by HR. Our study would help understand the molecular mechanism of the genotoxic and mutagenic effects of acetaldehyde.
Asunto(s)
Acetaldehído , Daño del ADN , Reparación del ADN , Recombinación Homóloga , Acetaldehído/toxicidad , Humanos , Recombinación Homóloga/efectos de los fármacos , Recombinación Homóloga/genética , Reparación del ADN/efectos de los fármacos , Recombinasa Rad51/metabolismo , Recombinasa Rad51/genética , Mutación/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Línea CelularRESUMEN
RecA protein and RecA/Rad51 orthologues are required for homologous recombination and DNA repair in all living creatures. RecA/Rad51 catalyzes formation of the D-loop, an obligatory recombination intermediate, through an ATP-dependent reaction consisting of two phases: homology recognition between double-stranded (ds)DNA and single-stranded (ss)DNA to form a hybrid-duplex core of 6-8 base pairs and subsequent hybrid-duplex/D-loop processing. How dsDNA recognizes homologous ssDNA is controversial. The aromatic residue at the tip of the ß-hairpin loop (L2) was shown to stabilize dsDNA-strand separation. We tested a model in which dsDNA strands were separated by the aromatic residue before homology recognition and found that the aromatic residue was not essential to homology recognition, but was required for D-loop processing. Contrary to the model, we found that the double helix was not unwound even a single turn during search for sequence homology, but rather was unwound only after the homologous sequence was recognized. These results suggest that dsDNA recognizes its homologous ssDNA before strand separation. The search for homologous sequence with homologous ssDNA without dsDNA-strand separation does not generate stress within the dsDNA; this would be an advantage for dsDNA to express homology-dependent functions in vivo and also in vitro.
Asunto(s)
ADN de Cadena Simple , Recombinación Homóloga , Recombinasa Rad51 , Emparejamiento Base , ADN/química , ADN de Cadena Simple/genética , Rec A Recombinasas/metabolismoRESUMEN
CRISPR/Cas9-mediated gene editing has great potential utility for treating genetic diseases. However, its therapeutic applications are limited by unintended genomic alterations arising from DNA double-strand breaks and random integration of exogenous DNA. In this study, we propose NICER, a method for correcting heterozygous mutations that employs multiple nicks (MNs) induced by Cas9 nickase and a homologous chromosome as an endogenous repair template. Although a single nick near the mutation site rarely leads to successful gene correction, additional nicks on homologous chromosomes strongly enhance gene correction efficiency via interhomolog homologous recombination (IH-HR). This process partially depends on BRCA1 and BRCA2, suggesting the existence of several distinct pathways for MN-induced IH-HR. According to a genomic analysis, NICER rarely induces unintended genomic alterations. Furthermore, NICER restores the expression of disease-causing genes in cells derived from genetic diseases with compound heterozygous mutations. Overall, NICER provides a precise strategy for gene correction.
Asunto(s)
Antibacterianos , Recombinación Homóloga , Mutación , Roturas del ADN de Doble Cadena , Desoxirribonucleasa IRESUMEN
Adult T-cell leukemia (ATL) is a peripheral T-cell malignancy caused by human T-cell leukemia virus type 1 (HTLV-1). Microsatellite instability (MSI) has been observed in ATL cells. Although MSI results from impaired mismatch repair (MMR) pathway, no null mutations in the genes encoding MMR factors are detectable in ATL cells. Thus, it is unclear whether or not impairment of MMR causes the MSI in ATL cells. HTLV-1 bZIP factor (HBZ) protein interacts with numerous host transcription factors and significantly contributes to disease pathogenesis and progression. Here we investigated the effect of HBZ on MMR in normal cells. The ectopic expression of HBZ in MMR-proficient cells induced MSI, and also suppressed the expression of several MMR factors. We then hypothesized that the HBZ compromises MMR by interfering with a transcription factor, nuclear respiratory factor 1 (NRF-1), and identified the consensus NRF-1 binding site at the promoter of the gene encoding MutS homologue 2 (MSH2), an essential MMR factor. The luciferase reporter assay revealed that NRF-1 overexpression enhanced MSH2 promoter activity, while co-expression of HBZ reversed this enhancement. These results supported the idea that HBZ suppresses the transcription of MSH2 by inhibiting NRF-1. Our data demonstrate that HBZ causes impaired MMR, and may imply a novel oncogenesis driven by HTLV-1.
Asunto(s)
Virus Linfotrópico T Tipo 1 Humano , Leucemia-Linfoma de Células T del Adulto , Adulto , Humanos , Virus Linfotrópico T Tipo 1 Humano/genética , Reparación de la Incompatibilidad de ADN , Proteínas de los Retroviridae/genética , Proteínas de los Retroviridae/metabolismo , Proteína 2 Homóloga a MutS/genética , Proteína 2 Homóloga a MutS/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Leucemia-Linfoma de Células T del Adulto/patologíaRESUMEN
ATM gene mutation carriers are predisposed to estrogen-receptor-positive breast cancer (BC). ATM prevents BC oncogenesis by activating p53 in every cell; however, much remains unknown about tissue-specific oncogenesis after ATM loss. Here, we report that ATM controls the early transcriptional response to estrogens. This response depends on topoisomerase II (TOP2), which generates TOP2-DNA double-strand break (DSB) complexes and rejoins the breaks. When TOP2-mediated ligation fails, ATM facilitates DSB repair. After estrogen exposure, TOP2-dependent DSBs arise at the c-MYC enhancer in human BC cells, and their defective repair changes the activation profile of enhancers and induces the overexpression of many genes, including the c-MYC oncogene. CRISPR/Cas9 cleavage at the enhancer also causes c-MYC overexpression, indicating that this DSB causes c-MYC overexpression. Estrogen treatment induced c-Myc protein overexpression in mammary epithelial cells of ATM-deficient mice. In conclusion, ATM suppresses the c-Myc-driven proliferative effects of estrogens, possibly explaining such tissue-specific oncogenesis.
Asunto(s)
Roturas del ADN de Doble Cadena , Genes myc , Humanos , Ratones , Animales , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Reparación del ADN , Estrógenos/farmacología , Epitelio/metabolismo , Carcinogénesis/genética , Proteínas de Ciclo Celular/metabolismoRESUMEN
Steroid hormones induce the transcription of target genes by activating nuclear receptors. Early transcriptional response to various stimuli, including hormones, involves the active catalysis of topoisomerase II (TOP2) at transcription regulatory sequences. TOP2 untangles DNAs by transiently generating double-strand breaks (DSBs), where TOP2 covalently binds to DSB ends. When TOP2 fails to rejoin, called "abortive" catalysis, the resulting DSBs are repaired by tyrosyl-DNA phosphodiesterase 2 (TDP2) and non-homologous end-joining (NHEJ). A steroid, cortisol, is the most important glucocorticoid, and dexamethasone (Dex), a synthetic glucocorticoid, is widely used for suppressing inflammation in clinics. We here revealed that clinically relevant concentrations of Dex and physiological concentrations of cortisol efficiently induce DSBs in G1 phase cells deficient in TDP2 and NHEJ. The DSB induction depends on glucocorticoid receptor (GR) and TOP2. Considering the specific role of TDP2 in removing TOP2 adducts from DSB ends, induced DSBs most likely represent stalled TOP2-DSB complexes. Inhibition of RNA polymerase II suppressed the DSBs formation only modestly in the G1 phase. We propose that cortisol and Dex frequently generate DSBs through the abortive catalysis of TOP2 at transcriptional regulatory sequences, including promoters or enhancers, where active TOP2 catalysis occurs during early transcriptional response.
Asunto(s)
Roturas del ADN de Doble Cadena , Factores de Transcripción , Factores de Transcripción/metabolismo , Proteínas de Unión al ADN/metabolismo , Glucocorticoides/farmacología , Reparación del ADN , Proteínas Nucleares/metabolismo , Hidrocortisona/farmacología , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/metabolismo , ADN-Topoisomerasas de Tipo II/genética , ADN-Topoisomerasas de Tipo II/metabolismo , ADN/genéticaRESUMEN
DNA-protein cross-links (DPCs) are generated by internal factors such as cellular aldehydes that are generated during normal metabolism and external factors such as environmental mutagens. A nucleoside analog, 5-aza-2'-deoxycytidine (5-azadC), is randomly incorporated into the genome during DNA replication and binds DNA methyltransferase 1 (DNMT1) covalently to form DNMT1-DPCs without inducing DNA strand breaks. Despite the recent progress in understanding the mechanisms of DPCs repair, how DNMT1-DPCs are repaired is unclear. The metalloprotease SPRTN has been considered as the primary enzyme to degrade protein components of DPCs to initiate the repair of DPCs. In this study, we showed that SPRTN-deficient (SPRTN-/-) human TK6 cells displayed high sensitivity to 5-azadC, and the removal of 5-azadC-induced DNMT1-DPCs was significantly slower in SPRTN-/- cells than that in wild-type cells. We also showed that the ubiquitination-dependent proteasomal degradation, which was independent of the SPRTN-mediated processing, was also involved in the repair of DNMT1-DPCs. Unexpectedly, we found that cells that are double deficient in tyrosyl DNA phosphodiesterase 1 and 2 (TDP1-/-TDP2-/-) were also sensitive to 5-azadC, although the removal of 5-azadC-induced DNMT1-DPCs was not compromised significantly. Furthermore, the 5-azadC treatment induced a marked accumulation of chromosomal breaks in SPRTN-/- as well as TDP1-/-TDP2-/- cells compared to wild-type cells, strongly suggesting that the 5-azadC-induced cell death was attributed to chromosomal DNMT1-DPCs. We conclude that SPRTN protects cells from 5-azadC-induced DNMT1-DPCs, and SPRTN may play a direct proteolytic role against DNMT1-DPCs and TDP1/TDP2 also contributes to suppress genome instability caused by 5-azadC in TK6 cells.
Asunto(s)
Reparación del ADN , Inestabilidad Genómica , Humanos , Decitabina/farmacología , ADN/metabolismo , Línea Celular , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/metabolismoRESUMEN
Base excision repair (BER) removes damaged bases by generating single-strand breaks (SSBs), gap-filling by DNA polymerase ß (POLß), and resealing SSBs. A base-damaging agent, methyl methanesulfonate (MMS) is widely used to study BER. BER increases cellular tolerance to MMS, anti-cancer base-damaging drugs, temozolomide, carmustine, and lomustine, and to clinical poly(ADP ribose)polymerase (PARP) poisons, olaparib and talazoparib. The poisons stabilize PARP1/SSB complexes, inhibiting access of BER factors to SSBs. PARP1 and XRCC1 collaboratively promote SSB resealing by recruiting POLß to SSBs, but XRCC1-/- cells are much more sensitive to MMS than PARP1-/- cells. We recently report that the PARP1 loss in XRCC1-/- cells restores their MMS tolerance and conclude that XPCC1 facilitates the release of PARP1 from SSBs by maintaining its autoPARylation. We here show that the PARP1 loss in XRCC1-/- cells also restores their tolerance to the three anti-cancer base-damaging drugs, although they and MMS induce different sets of base damage. We reveal the synthetic lethality of the XRCC1-/- mutation, but not POLß-/- , with olaparib and talazoparib, indicating that XRCC1 is a unique BER factor in suppressing toxic PARP1/SSB complex and can suppress even when PARP1 catalysis is inhibited. In conclusion, XRCC1 suppresses the PARP1/SSB complex via PARP1 catalysis-dependent and independent mechanisms.
Asunto(s)
Venenos , Poli(ADP-Ribosa) Polimerasas , Adenosina Difosfato Ribosa , Alquilantes , ADN , Daño del ADN , Reparación del ADN , Metilmetanosulfonato/farmacología , Ftalazinas , Piperazinas , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Poli(ADP-Ribosa) Polimerasas/genética , Poli(ADP-Ribosa) Polimerasas/metabolismo , Temozolomida/farmacologíaRESUMEN
BACKGROUND: Peroxiredoxin 1 (PRDX1) is a member of a ubiquitous family of thiol peroxidases that catalyze the reduction of peroxides, including hydrogen peroxide. It functions as an antioxidant enzyme, similar to catalase and glutathione peroxidase. PRDX1 was recently shown act as a sensor of reactive oxygen species (ROS) and play a role in ROS-dependent intracellular signaling pathways. To investigate its physiological functions, PRDX1 was conditionally disrupted in chicken DT40 cells in the present study. RESULTS: The depletion of PRDX1 resulted in cell death with increased levels of intracellular ROS. PRDX1-depleted cells did not show the accumulation of chromosomal breaks or sister chromatid exchange (SCE). These results suggest that cell death in PRDX1-depleted cells was not due to DNA damage. 2-Mercaptoethanol protected against cell death in PRDX1-depleted cells and also suppressed elevations in ROS. CONCLUSIONS: PRDX1 is essential in chicken DT40 cells and plays an important role in maintaining intracellular ROS homeostasis (or in the fine-tuning of cellular ROS levels). Cells deficient in PRDX1 may be used as an endogenously deregulated ROS model to elucidate the physiological roles of ROS in maintaining proper cell growth.
RESUMEN
Germline mutations in the mismatch repair (MMR) genes MSH2, MSH6, MLH1, and PMS2 are linked to cancer of the colon and other organs, characterized by microsatellite instability and a large increase in mutation frequency. Unexpectedly, mutations in EXO1, encoding the only exonuclease genetically implicated in MMR, are not linked to familial cancer and cause a substantially weaker mutator phenotype. This difference could be explained if eukaryotic cells possessed additional exonucleases redundant with EXO1. Analysis of the MLH1 interactome identified FANCD2-associated nuclease 1 (FAN1), a novel enzyme with biochemical properties resembling EXO1. We now show that FAN1 efficiently substitutes for EXO1 in MMR assays and that this functional complementation is modulated by its interaction with MLH1. FAN1 also contributes to MMR in vivo; cells lacking both EXO1 and FAN1 have an MMR defect and display resistance to N-methyl-N-nitrosourea (MNU) and 6-thioguanine (TG). Moreover, FAN1 loss amplifies the mutational profile of EXO1-deficient cells, suggesting that the two nucleases act redundantly in the same antimutagenic pathway. However, the increased drug resistance and mutator phenotype of FAN1/EXO1-deficient cells are less prominent than those seen in cells lacking MSH6 or MLH1. Eukaryotic cells thus apparently possess additional mechanisms that compensate for the loss of EXO1.
Asunto(s)
Proteínas Aviares/metabolismo , Reparación de la Incompatibilidad de ADN , Endodesoxirribonucleasas/metabolismo , Exodesoxirribonucleasas/metabolismo , Enzimas Multifuncionales/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Línea Celular , Pollos , Endodesoxirribonucleasas/química , Exodesoxirribonucleasas/química , Exodesoxirribonucleasas/deficiencia , Exodesoxirribonucleasas/genética , Guanosina/análogos & derivados , Células HEK293 , Humanos , Metilnitronitrosoguanidina , Enzimas Multifuncionales/química , Mutación/genética , TionucleósidosRESUMEN
DNA double-strand breaks (DSBs) are repaired mainly by non-homologous end joining (NHEJ) or homologous recombination (HR). RIF1 negatively regulates resection through the effector Shieldin, which associates with a short 3' single-stranded DNA (ssDNA) overhang by the MRN (MRE11-RAD50-NBS1) complex, to prevent further resection and HR repair. In this study, we show that RIF1, but not Shieldin, inhibits the accumulation of CtIP at DSB sites immediately after damage, suggesting that RIF1 has another effector besides Shieldin. We find that protein phosphatase 1 (PP1), a known RIF1 effector in replication, localizes at damage sites dependent on RIF1, where it suppresses downstream CtIP accumulation and limits the resection by the MRN complex. PP1 therefore acts as a RIF1 effector distinct from Shieldin. Furthermore, PP1 deficiency in the context of Shieldin depletion elevates HR immediately after irradiation. We conclude that PP1 inhibits resection before the action of Shieldin to prevent precocious HR in the early phase of the damage response.
Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Roturas del ADN de Doble Cadena , Proteínas de Unión al ADN/metabolismo , Proteína Fosfatasa 1/metabolismo , Proteínas de Unión a Telómeros/metabolismo , Proteína BRCA1/metabolismo , Secuencia de Bases , Roturas del ADN de Doble Cadena/efectos de los fármacos , Endodesoxirribonucleasas/metabolismo , Células HeLa , Recombinación Homóloga/efectos de los fármacos , Humanos , Complejos Multiproteicos/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Unión Proteica/efectos de los fármacosRESUMEN
Fanconi anemia (FA) is a devastating hereditary disease characterized by bone marrow failure (BMF) and acute myeloid leukemia (AML). As FA-deficient cells are hypersensitive to DNA interstrand crosslinks (ICLs), ICLs are widely assumed to be the lesions responsible for FA symptoms. Here, we show that FA-mutated cells are hypersensitive to persistent replication stress and that FA proteins play a role in the break-induced-replication (BIR)-like pathway for fork restart. Both the BIR-like pathway and ICL repair share almost identical molecular mechanisms of 53BP1-BRCA1-controlled signaling response, SLX4- and FAN1-mediated fork cleavage and POLD3-dependent DNA synthesis, suggesting that the FA pathway is intrinsically one of the BIR-like pathways. Replication stress not only triggers BMF in FA-deficient mice, but also specifically induces monosomy 7, which is associated with progression to AML in patients with FA, in FA-deficient cells.
Asunto(s)
Replicación del ADN , Proteínas del Grupo de Complementación de la Anemia de Fanconi/fisiología , Anemia de Fanconi/genética , Aneuploidia , Animales , Trastornos de Fallo de la Médula Ósea/etiología , Línea Celular Transformada , Pollos , Rotura Cromosómica , Deleción Cromosómica , Cromosomas Humanos Par 7/genética , ADN Polimerasa III/fisiología , Replicación del ADN/genética , Progresión de la Enfermedad , Anemia de Fanconi/metabolismo , Proteínas del Grupo de Complementación de la Anemia de Fanconi/deficiencia , Proteínas del Grupo de Complementación de la Anemia de Fanconi/genética , Femenino , Células HCT116 , Células HEK293 , Humanos , Hidroxiurea/farmacología , Leucemia Mieloide Aguda/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Genéticos , Especificidad de la Especie , Proteína 1 de Unión al Supresor Tumoral P53/fisiología , Ubiquitina-Proteína Ligasas/fisiologíaRESUMEN
Mammalian DNA base excision repair (BER) is accelerated by poly(ADP-ribose) polymerases (PARPs) and the scaffold protein XRCC1. PARPs are sensors that detect single-strand break intermediates, but the critical role of XRCC1 during BER is unknown. Here, we show that protein complexes containing DNA polymerase ß and DNA ligase III that are assembled by XRCC1 prevent excessive engagement and activity of PARP1 during BER. As a result, PARP1 becomes "trapped" on BER intermediates in XRCC1-deficient cells in a manner similar to that induced by PARP inhibitors, including in patient fibroblasts from XRCC1-mutated disease. This excessive PARP1 engagement and trapping renders BER intermediates inaccessible to enzymes such as DNA polymerase ß and impedes their repair. Consequently, PARP1 deletion rescues BER and resistance to base damage in XRCC1-/- cells. These data reveal excessive PARP1 engagement during BER as a threat to genome integrity and identify XRCC1 as an "anti-trapper" that prevents toxic PARP1 activity.
Asunto(s)
Reparación del ADN/genética , ADN/genética , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X/metabolismo , Animales , Línea Celular , Roturas del ADN de Cadena Simple , Daño del ADN/efectos de los fármacos , Daño del ADN/genética , ADN Ligasa (ATP)/metabolismo , ADN Polimerasa beta/metabolismo , Reparación del ADN/efectos de los fármacos , Proteínas de Unión al ADN/metabolismo , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Humanos , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Poli(ADP-Ribosa) Polimerasas/metabolismo , Unión Proteica/efectos de los fármacosRESUMEN
BACKGROUND: SLFN11 has recently been reported to execute cancer cells harboring replicative stress induced by DNA damaging agents. However, the roles of SLFN11 under physiological conditions remain poorly understood. Germinal center B-cells (GCBs) undergo somatic hypermutations and class-switch recombination, which can cause physiological genotoxic stress. Hence, we tested whether SLFN11 expression needs to be suppressed in GCBs during B-cell development. OBJECTIVE: To clarify the expression profile of SLFN11 in different developmental stages of B-cells and B-cell-derived cancers. METHODS: We analyzed the expression of SLFN11 by mining cell line databases for different stages of normal B-cells and various types of B-cell-derived cancer cell lines. We performed dual immunohistochemical staining for SLFN11 and B-cell specific markers in normal human lymphatic tissues. We tested the effects of two epigenetic modifiers, an EZH2 inhibitor, tazemetostat (EPZ6438) and a histone deacetylase inhibitor, panobinostat (LBH589) on SLFN11 expression in GCB-derived lymphoma cell lines. We also examined the therapeutic efficacy of these drugs in combination with cytosine arabinoside and the effects of SLFN11 on the efficacy of cytosine arabinoside in SLFN11-overexpressing cells. RESULTS: SLFN11 mRNA level was found low in both normal GCBs and GCB-DLBCL (GCB like-diffuse large B-cell lymphoma). Immunohistochemical staining showed low SLFN11 expression in GCBs and high SLFN11 expression in plasmablasts and plasmacytes. The EZH2 and HDAC epigenetic modifiers upregulated SLFN11 expression in GCB-derived lymphoma cells and made them more susceptible to cytosine arabinoside. SLFN11 overexpression further sensitized GCB-derived lymphoma cells to cytosine arabinoside. CONCLUSIONS: The expression of SLFN11 is epigenetically suppressed in normal GCBs and GCB-derived lymphomas. GCB-derived lymphomas with low SLFN11 expression can be treated by the combination of epigenetic modifiers and cytosine arabinoside.
Asunto(s)
Linfocitos B/inmunología , Centro Germinal/inmunología , Proteínas Nucleares/genética , Línea Celular Tumoral , Bases de Datos Genéticas , Epigénesis Genética/efectos de los fármacos , Epigenómica , Expresión Génica/genética , Regulación Neoplásica de la Expresión Génica/genética , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Activación de Linfocitos/efectos de los fármacos , Linfocitos/inmunología , Linfoma de Células B Grandes Difuso/patología , Proteínas Nucleares/metabolismo , Células Plasmáticas/inmunología , Proteínas Proto-Oncogénicas c-bcl-6/genéticaRESUMEN
Ribonucleoside triphosphates are often incorporated into genomic DNA during DNA replication. The accumulation of unrepaired ribonucleotides is associated with genomic instability, which is mediated by DNA topoisomerase 1 (Top1) processing of embedded ribonucleotides. The cleavage initiated by Top1 at the site of a ribonucleotide leads to the formation of a Top1-DNA cleavage complex (Top1cc), occasionally resulting in a DNA double-strand break (DSB). In humans, tyrosyl-DNA phosphodiesterases (TDPs) are essential repair enzymes that resolve the trapped Top1cc followed by downstream repair factors. However, there is limited cellular evidence of the involvement of TDPs in the processing of incorporated ribonucleotides in mammals. We assessed the role of TDPs in mutagenesis induced by a single ribonucleotide embedded into DNA. A supF shuttle vector site-specifically containing a single riboguanosine (rG) was introduced into the human lymphoblastoid TK6 cell line and its TDP1-, TDP2-, and TDP1/TDP2-deficient derivatives. TDP1 and TDP2 insufficiency remarkably decreased the mutant frequency caused by an embedded rG. The ratio of large deletion mutations induced by rG was also substantially lower in TDP1/TDP2-deficient cells than wild-type cells. Furthermore, the disruption of TDPs reduced the length of rG-mediated large deletion mutations. The recovery ratio of the propagated plasmid was also increased in TDP1/TDP2-deficient cells after the transfection of the shuttle vector containing rG. The results suggest that TDPs-mediated ribonucleotide processing cascade leads to unfavorable consequences, whereas in the absence of these repair factors, a more error-free processing pathway might function to suppress the ribonucleotide-induced mutagenesis. Furthermore, base substitution mutations at sites outside the position of rG were detected in the supF gene via a TDPs-independent mechanism. Overall, we provide new insights into the mechanism of mutagenesis induced by an embedded ribonucleotide in mammalian cells, which may lead to the fatal phenotype in the ribonucleotide excision repair deficiency.
Asunto(s)
Mutagénesis/fisiología , Mutágenos , Hidrolasas Diéster Fosfóricas/genética , Ribonucleótidos/genética , Línea Celular , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Humanos , Hidrolasas Diéster Fosfóricas/metabolismo , Ribonucleótidos/metabolismoRESUMEN
Radiotherapy kills malignant cells by generating double-strand breaks (DSBs). Ionizing- radiation (IR) generates "dirty" DSBs, which associates with blocking chemical adducts at DSB ends. Homologous-directed repair (HDR) efficiently removes IR-induced blocking adducts from both 3' and 5' ends of DSBs. Nonhomologous end-joining (NHEJ) rejoins virtually all DSBs in G1 phase and â¼80 % of DSBs in G2 phase. However, DNA Ligase IV, an essential NHEJ factor, rejoins only "clean" ligatable DSBs carrying 3'-OH and 5'-phosphate DSB ends but not dirty DSBs. Recent studies have identified a number of nucleases, especially the MRE11 nuclease, as key factors performing the removal of blocking chemical adducts to restore clean ligatable DSBs for subsequent NHEJ. This restoration, but not subsequent NHEJ, is the rate-limiting step in the rejoining of IR- induced DSBs. This review describes repair factors that contribute to the restoration of clean DSBs before NHEJ.
Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , Proteína Homóloga de MRE11/metabolismo , Radiación Ionizante , Reparación del ADN por Recombinación , Ciclo Celular , ADN/metabolismo , ADN/efectos de la radiación , Aductos de ADN/metabolismo , ADN Ligasa (ATP)/metabolismo , HumanosRESUMEN
Nucleotide excision repair (NER) removes helix-destabilizing adducts including ultraviolet (UV) lesions, cyclobutane pyrimidine dimers (CPDs), and pyrimidine (6-4) pyrimidone photoproducts (6-4PPs). In comparison with CPDs, 6-4PPs have greater cytotoxicity and more strongly destabilizing properties of the DNA helix. It is generally believed that NER is the only DNA repair pathway that removes the UV lesions as evidenced by the previous data since no repair of UV lesions was detected in NER-deficient skin fibroblasts. Topoisomerase I (TOP1) constantly creates transient single-strand breaks (SSBs) releasing the torsional stress in genomic duplex DNA. Stalled TOP1-SSB complexes can form near DNA lesions including abasic sites and ribonucleotides embedded in chromosomal DNA. Here we show that base excision repair (BER) increases cellular tolerance to UV independently of NER in cancer cells. UV lesions irreversibly trap stable TOP1-SSB complexes near the UV damage in NER-deficient cells, and the resulting SSBs activate BER. Biochemical experiments show that 6-4PPs efficiently induce stable TOP1-SSB complexes, and the long-patch repair synthesis of BER removes 6-4PPs downstream of the SSB. Furthermore, NER-deficient cancer cell lines remove 6-4PPs within 24 h, but not CPDs, and the removal correlates with TOP1 expression. NER-deficient skin fibroblasts weakly express TOP1 and show no detectable repair of 6-4PPs. Remarkably, the ectopic expression of TOP1 in these fibroblasts led them to completely repair 6-4PPs within 24 h. In conclusion, we reveal a DNA repair pathway initiated by TOP1, which significantly contributes to cellular tolerance to UV-induced lesions particularly in malignant cancer cells overexpressing TOP1.
Asunto(s)
Roturas del ADN de Cadena Simple/efectos de la radiación , Reparación del ADN , ADN-Topoisomerasas de Tipo I/metabolismo , Rayos Ultravioleta/efectos adversos , Sistemas CRISPR-Cas/genética , ADN Polimerasa beta/genética , ADN Polimerasa beta/metabolismo , Fibroblastos , Técnicas de Inactivación de Genes , Humanos , Células MCF-7 , Cultivo Primario de Células , Piel/citología , Piel/patología , Piel/efectos de la radiación , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X/genética , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X/metabolismo , Xerodermia Pigmentosa/etiología , Xerodermia Pigmentosa/patología , Proteína de la Xerodermia Pigmentosa del Grupo A/genética , Proteína de la Xerodermia Pigmentosa del Grupo A/metabolismoRESUMEN
Proteins are covalently trapped on DNA to form DNA-protein cross-links (DPCs) when cells are exposed to DNA-damaging agents. Aldehyde compounds produce common types of DPCs that contain proteins in an undisrupted DNA strand. Tyrosyl-DNA phosphodiesterase 1 (TDP1) repairs topoisomerase 1 (TOPO1) that is trapped at the 3'-end of DNA. In the present study, we examined the contribution of TDP1 to the repair of formaldehyde-induced DPCs using a reverse genetic strategy with chicken DT40 cells. The results obtained showed that cells deficient in TDP1 were sensitive to formaldehyde. The removal of formaldehyde-induced DPCs was slower in tdp1-deficient cells than in wild type cells. We also found that formaldehyde did not produce trapped TOPO1, indicating that trapped TOPO1 was not a primary cytotoxic DNA lesion that was generated by formaldehyde and repaired by TDP1. The formaldehyde treatment resulted in the accumulation of chromosomal breakages that were more prominent in tdp1-deficient cells than in wild type cells. Therefore, TDP1 plays a critical role in the repair of formaldehyde-induced DPCs that are distinct from trapped TOPO1.