Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Methods Mol Biol ; 2803: 49-58, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38676884

RESUMEN

Pulmonary arterial hypertension (PAH) is a severe vascular disease characterized by persistent precapillary pulmonary hypertension, leading to right heart failure and death. Despite intense research in the last decades, PAH remains an incurable disease with high morbidity and mortality. New directions and therapies to improve understanding and treatment of PAH are desperately needed. The pathological mechanisms leading to this fatal disorder remain mostly undetermined, although structural remodeling of the pulmonary vessels is known to be an early feature of PAH. Pulmonary vascular remodeling includes proliferation and migration of pulmonary artery smooth muscle cells (PASMCs) and pulmonary artery endothelial cells (PAECs). The use of in vitro approaches is useful to delineate the mechanisms involved in the pathogenesis of PAH and to identify new therapeutic strategies for PAH. In this chapter, we describe protocols for culturing and assessing proliferation and migration of human PASMCs and PAECs.


Asunto(s)
Movimiento Celular , Proliferación Celular , Células Endoteliales , Miocitos del Músculo Liso , Arteria Pulmonar , Humanos , Arteria Pulmonar/citología , Células Endoteliales/citología , Células Endoteliales/metabolismo , Miocitos del Músculo Liso/citología , Miocitos del Músculo Liso/metabolismo , Técnicas de Cultivo de Célula/métodos , Células Cultivadas , Músculo Liso Vascular/citología
2.
Methods Mol Biol ; 2803: 163-172, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38676892

RESUMEN

Pulmonary hypertension (PH) is a devastating disease, characterized by complex remodeling of the pulmonary vasculature. PH is classified into five groups based on different etiology, pathology, as well as therapy and prognosis. Animal models are essential for the study of underlying mechanisms, pathophysiology, and preclinical testing of new therapies for PH. The complexity of the disease with different clinical entities dictates the necessity for more than one animal model to resemble PH, as a single model cannot imitate the broad spectrum of human PH.Here we describe a detailed protocol for creating a rat model of PH with right ventricular (RV) failure. Furthermore, we present how to characterize it hemodynamically by invasive measurements of RV and pulmonary arterial (PA) pressures. Animals subjected to this model display severe pulmonary vascular remodeling and RV dysfunction. In this model, rats undergo a single subcutaneous injection of Sugen (SU5416, a vascular endothelial growth factor inhibitor) and are immediately exposed to chronic hypoxia in a hypoxia chamber for 3-6 weeks. This Sugen/Hypoxia rat model resembles Group 1 PH.


Asunto(s)
Modelos Animales de Enfermedad , Insuficiencia Cardíaca , Hipertensión Pulmonar , Hipoxia , Animales , Hipertensión Pulmonar/fisiopatología , Hipertensión Pulmonar/patología , Hipertensión Pulmonar/etiología , Ratas , Hipoxia/metabolismo , Insuficiencia Cardíaca/fisiopatología , Insuficiencia Cardíaca/etiología , Insuficiencia Cardíaca/patología , Pirroles/farmacología , Indoles/farmacología , Disfunción Ventricular Derecha/fisiopatología , Disfunción Ventricular Derecha/etiología , Hemodinámica , Arteria Pulmonar/patología , Arteria Pulmonar/fisiopatología , Masculino , Humanos , Remodelación Vascular , Factor A de Crecimiento Endotelial Vascular/metabolismo
3.
Science ; 381(6655): 285-290, 2023 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-37471539

RESUMEN

Disruption of the physiologic sleep-wake cycle and low melatonin levels frequently accompany cardiac disease, yet the underlying mechanism has remained enigmatic. Immunostaining of sympathetic axons in optically cleared pineal glands from humans and mice with cardiac disease revealed their substantial denervation compared with controls. Spatial, single-cell, nuclear, and bulk RNA sequencing traced this defect back to the superior cervical ganglia (SCG), which responded to cardiac disease with accumulation of inflammatory macrophages, fibrosis, and the selective loss of pineal gland-innervating neurons. Depletion of macrophages in the SCG prevented disease-associated denervation of the pineal gland and restored physiological melatonin secretion. Our data identify the mechanism by which diurnal rhythmicity in cardiac disease is disturbed and suggest a target for therapeutic intervention.


Asunto(s)
Ritmo Circadiano , Cardiopatías , Macrófagos , Melatonina , Glándula Pineal , Trastornos del Sueño del Ritmo Circadiano , Ganglio Cervical Superior , Animales , Humanos , Ratones , Cardiopatías/fisiopatología , Melatonina/metabolismo , Glándula Pineal/patología , Glándula Pineal/fisiopatología , Sueño , Trastornos del Sueño del Ritmo Circadiano/fisiopatología , Ganglio Cervical Superior/patología , Ganglio Cervical Superior/fisiopatología , Macrófagos/inmunología , Fibrosis
4.
Nat Commun ; 13(1): 220, 2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-35017523

RESUMEN

Abnormalities of ventricular action potential cause malignant cardiac arrhythmias and sudden cardiac death. Here, we aim to identify microRNAs that regulate the human cardiac action potential and ask whether their manipulation allows for therapeutic modulation of action potential abnormalities. Quantitative analysis of the microRNA targetomes in human cardiac myocytes identifies miR-365 as a primary microRNA to regulate repolarizing ion channels. Action potential recordings in patient-specific induced pluripotent stem cell-derived cardiac myocytes show that elevation of miR-365 significantly prolongs action potential duration in myocytes derived from a Short-QT syndrome patient, whereas specific inhibition of miR-365 normalizes pathologically prolonged action potential in Long-QT syndrome myocytes. Transcriptome analyses in these cells at bulk and single-cell level corroborate the key cardiac repolarizing channels as direct targets of miR-365, together with functionally synergistic regulation of additional action potential-regulating genes by this microRNA. Whole-cell patch-clamp experiments confirm miR-365-dependent regulation of repolarizing ionic current Iks. Finally, refractory period measurements in human myocardial slices substantiate the regulatory effect of miR-365 on action potential in adult human myocardial tissue. Our results delineate miR-365 to regulate human cardiac action potential duration by targeting key factors of cardiac repolarization.


Asunto(s)
Potenciales de Acción/fisiología , Arritmias Cardíacas/metabolismo , MicroARNs/metabolismo , Arritmias Cardíacas/genética , Perfilación de la Expresión Génica , Células HEK293 , Ventrículos Cardíacos/fisiopatología , Humanos , Síndrome de QT Prolongado/genética , MicroARNs/genética , Miocardio , Miocitos Cardíacos
5.
Heart Rhythm ; 19(1): 113-124, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34563688

RESUMEN

BACKGROUND: Electrophysiological (EP) properties have been studied mainly in the monocrotaline model of pulmonary arterial hypertension (PAH). Findings are confounded by major extrapulmonary toxicities, which preclude the ability to draw definitive conclusions regarding the role of PAH per se in EP remodeling. OBJECTIVE: The purpose of this study was to investigate the EP substrate and arrhythmic vulnerability of a new model of PAH that avoids extracardiopulmonary toxicities. METHODS: Sprague-Dawley rats underwent left pneumonectomy (Pn) followed by injection of the vascular endothelial growth factor inhibitor Sugen-5416 (Su/Pn). Five weeks later, cardiac magnetic resonance imaging was performed in vivo, optical action potential (AP) mapping ex vivo, and molecular analyses in vitro. RESULTS: Su/Pn rats exhibited right ventricular (RV) hypertrophy and were highly prone to pacing-induced ventricular tachycardia/fibrillation (VT/VF). Underlying this susceptibility was disproportionate RV-sided prolongation of AP duration, which promoted formation of right-sided AP alternans at physiological rates. While propagation was impaired at all rates in Su/Pn rats, the extent of conduction slowing was most severe immediately before the emergence of interventricular lines of block and onset of VT/VF. Measurement of the cardiac wavelength revealed a decrease in Su/Pn relative to control. Nav1.5 and total connexin 43 expression was not altered, while connexin 43 phosphorylation was decreased in PAH. Col1a1 and Col3a1 transcripts were upregulated coinciding with myocardial fibrosis. Once generated, VT/VF was sustained by multiple reentrant circuits with a lower frequency of RV activation due to wavebreak formation. CONCLUSION: In this pure model of PAH, we document RV-predominant remodeling that promotes multiwavelet reentry underlying VT. The Su/Pn model represents a severe form of PAH that allows the study of EP properties without the confounding influence of extrapulmonary toxicity.


Asunto(s)
Arritmias Cardíacas/fisiopatología , Hipertensión Pulmonar/fisiopatología , Remodelación Ventricular , Potenciales de Acción , Animales , Modelos Animales de Enfermedad , Indoles , Imagen por Resonancia Magnética , Masculino , Neumonectomía , Pirroles , Ratas , Ratas Sprague-Dawley , Toracotomía
6.
Int J Mol Sci ; 22(17)2021 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-34502015

RESUMEN

Pulmonary arterial hypertension (PAH) is a devastating lung disease characterized by the progressive obstruction of the distal pulmonary arteries (PA). Structural and functional alteration of pulmonary artery smooth muscle cells (PASMC) and endothelial cells (PAEC) contributes to PA wall remodeling and vascular resistance, which may lead to maladaptive right ventricular (RV) failure and, ultimately, death. Here, we found that decreased expression of sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2a (SERCA2a) in the lung samples of PAH patients was associated with the down-regulation of bone morphogenetic protein receptor type 2 (BMPR2) and the activation of signal transducer and activator of transcription 3 (STAT3). Our results showed that the antiproliferative properties of SERCA2a are mediated through the STAT3/BMPR2 pathway. At the molecular level, transcriptome analysis of PASMCs co-overexpressing SERCA2a and BMPR2 identified STAT3 amongst the most highly regulated transcription factors. Using a specific siRNA and a potent pharmacological STAT3 inhibitor (STAT3i, HJC0152), we found that SERCA2a potentiated BMPR2 expression by repressing STAT3 activity in PASMCs and PAECs. In vivo, we used a validated and efficient model of severe PAH induced by unilateral left pneumonectomy combined with monocrotaline (PNT/MCT) to further evaluate the therapeutic potential of single and combination therapies using adeno-associated virus (AAV) technology and a STAT3i. We found that intratracheal delivery of AAV1 encoding SERCA2 or BMPR2 alone or STAT3i was sufficient to reduce the mean PA pressure and vascular remodeling while improving RV systolic pressures, RV ejection fraction, and cardiac remodeling. Interestingly, we found that combined therapy of AAV1.hSERCA2a with AAV1.hBMPR2 or STAT3i enhanced the beneficial effects of SERCA2a. Finally, we used cardiac magnetic resonance imaging to measure RV function and found that therapies using AAV1.hSERCA2a alone or combined with STAT3i significantly inhibited RV structural and functional changes in PNT/MCT-induced PAH. In conclusion, our study demonstrated that combination therapies using SERCA2a gene transfer with a STAT3 inhibitor could represent a new promising therapeutic alternative to inhibit PAH and to restore BMPR2 expression by limiting STAT3 activity.


Asunto(s)
Receptores de Proteínas Morfogenéticas Óseas de Tipo II/genética , Pulmón/efectos de los fármacos , Hipertensión Arterial Pulmonar/tratamiento farmacológico , ARN Interferente Pequeño/farmacología , Factor de Transcripción STAT3/antagonistas & inhibidores , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Animales , Células Cultivadas , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Terapia Genética , Humanos , Pulmón/metabolismo , Pulmón/patología , Hipertensión Arterial Pulmonar/genética , Hipertensión Arterial Pulmonar/metabolismo , Hipertensión Arterial Pulmonar/patología , ARN Interferente Pequeño/uso terapéutico , Ratas , Ratas Sprague-Dawley , Factor de Transcripción STAT3/genética , Remodelación Vascular/efectos de los fármacos
7.
Circulation ; 144(1): 52-73, 2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-34078089

RESUMEN

BACKGROUND: Epigenetic mechanisms are critical in the pathogenesis of pulmonary arterial hypertension (PAH). Previous studies have suggested that hypermethylation of the BMPR2 (bone morphogenetic protein receptor type 2) promoter is associated with BMPR2 downregulation and progression of PAH. Here, we investigated for the first time the role of SIN3a (switch-independent 3a), a transcriptional regulator, in the epigenetic mechanisms underlying hypermethylation of BMPR2 in the pathogenesis of PAH. METHODS: We used lung samples from PAH patients and non-PAH controls, preclinical mouse and rat PAH models, and human pulmonary arterial smooth muscle cells. Expression of SIN3a was modulated using a lentiviral vector or a siRNA in vitro and a specific adeno-associated virus serotype 1 or a lentivirus encoding for human SIN3a in vivo. RESULTS: SIN3a is a known transcriptional regulator; however, its role in cardiovascular diseases, especially PAH, is unknown. It is interesting that we detected a dysregulation of SIN3 expression in patients and in rodent models, which is strongly associated with decreased BMPR2 expression. SIN3a is known to regulate epigenetic changes. Therefore, we tested its role in the regulation of BMPR2 and found that BMPR2 is regulated by SIN3a. It is interesting that SIN3a overexpression inhibited human pulmonary arterial smooth muscle cells proliferation and upregulated BMPR2 expression by preventing the methylation of the BMPR2 promoter region. RNA-sequencing analysis suggested that SIN3a downregulated the expression of DNA and histone methyltransferases such as DNMT1 (DNA methyltransferase 1) and EZH2 (enhancer of zeste 2 polycomb repressive complex 2) while promoting the expression of the DNA demethylase TET1 (ten-eleven translocation methylcytosine dioxygenase 1). Mechanistically, SIN3a promoted BMPR2 expression by decreasing CTCF (CCCTC-binding factor) binding to the BMPR2 promoter. Last, we identified intratracheal delivery of adeno-associated virus serotype human SIN3a to be a beneficial therapeutic approach in PAH by attenuating pulmonary vascular and right ventricle remodeling, decreasing right ventricle systolic pressure and mean pulmonary arterial pressure, and restoring BMPR2 expression in rodent models of PAH. CONCLUSIONS: All together, our study unveiled the protective and beneficial role of SIN3a in pulmonary hypertension. We also identified a novel and distinct molecular mechanism by which SIN3a regulates BMPR2 in human pulmonary arterial smooth muscle cells. Our study also identified lung-targeted SIN3a gene therapy using adeno-associated virus serotype 1 as a new promising therapeutic strategy for treating patients with PAH.


Asunto(s)
Receptores de Proteínas Morfogenéticas Óseas de Tipo II/biosíntesis , Terapia Genética/métodos , Hipertensión Arterial Pulmonar/metabolismo , Hipertensión Arterial Pulmonar/terapia , Complejo Correpresor Histona Desacetilasa y Sin3/biosíntesis , Animales , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/genética , Células Cultivadas , Regulación de la Expresión Génica , Humanos , Metilación , Ratones , Hipertensión Arterial Pulmonar/genética , Ratas , Ratas Sprague-Dawley , Complejo Correpresor Histona Desacetilasa y Sin3/metabolismo
8.
Sci Rep ; 11(1): 3915, 2021 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-33594087

RESUMEN

Left ventricular remodeling following myocardial infarction (MI) is related to adverse outcome. It has been shown that an up-regulation of plasma soluble ST2 (sST2) levels are associated with lower pre-discharge left ventricular (LV) ejection fraction, adverse cardiovascular outcomes and mortality outcome after MI. The mechanisms involved in its modulation are unknown and there is not specific treatment capable of lowering plasma sST2 levels in acute-stage HF. We recently identified Yin-yang 1 (Yy1) as a transcription factor related to circulating soluble ST2 isoform (sST2) expression in infarcted myocardium. However, the underlying mechanisms involved in this process have not been thoroughly elucidated. This study aimed to evaluate the pathophysiological implication of miR-199a-5p in cardiac remodeling and the expression of the soluble ST2 isoform. Myocardial infarction (MI) was induced by permanent ligation of the left anterior coronary artery in C57BL6/J mice that randomly received antimiR199a therapy, antimiR-Ctrl or saline. A model of biomechanical stretching was also used to characterize the underlying mechanisms involved in the activation of Yy1/sST2 axis. Our results show that the significant upregulation of miR-199a-5p after myocardial infarction increases pathological cardiac hypertrophy by upregulating circulating soluble sST2 levels. AntimiR199a therapy up-regulates Sirt1 and inactivates the co-activator P300 protein, thus leading to Yy1 inhibition which decreases both expression and release of circulating sST2 by cardiomyocytes after myocardial infarction. Pharmacological inhibition of miR-199a rescues cardiac hypertrophy and heart failure in mice, offering a potential therapeutic approach for cardiac failure.


Asunto(s)
Hipertrofia Ventricular Izquierda/metabolismo , Proteína 1 Similar al Receptor de Interleucina-1/metabolismo , MicroARNs/metabolismo , Infarto del Miocardio/complicaciones , Remodelación Ventricular , Animales , Proteína p300 Asociada a E1A/metabolismo , Masculino , Ratones Endogámicos C57BL , Infarto del Miocardio/metabolismo , Infarto del Miocardio/fisiopatología , Sirtuina 1/metabolismo , Factor de Transcripción YY1/metabolismo
10.
Sci Rep ; 10(1): 17138, 2020 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-33051505

RESUMEN

Myocardial fibrosis is a major determinant of clinical outcomes in heart failure (HF) patients. It is characterized by the emergence of myofibroblasts and early activation of pro-fibrotic signaling pathways before adverse ventricular remodeling and progression of HF. Boron has been reported in recent years to augment the innate immune system and cell proliferation, which play an important role in the repair and regeneration of the injured tissue. Currently, the effect of boron on cardiac contractility and remodeling is unknown. In this study, we investigated, for the first time, the effect of boron supplementation on cardiac function, myocardial fibrosis, apoptosis and regeneration in a rat model myocardial infarction (MI)-induced HF. MI was induced in animals and borax, a sodium salt of boron, was administered for 7 days, p.o., 21 days post-injury at a dose level of 4 mg/kg body weight. Transthoracic echocardiographic analysis showed a significant improvement in systolic and diastolic functions with boron treatment compared to saline control. In addition, boron administration showed a marked reduction in myocardial fibrosis and apoptosis in the injured hearts, highlighting a protective effect of boron in the ischemic heart. Interestingly, we observed a tenfold increase of nuclei in thin myocardial sections stained positive for the cell cycle marker Ki67 in the MI boron-treated rats compared to saline, indicative of increased cardiomyocyte cell cycle activity in MI hearts, highlighting its potential role in regeneration post-injury. We similarly observed increased Ki67 and BrdU staining in cultured fresh neonatal rat ventricular cardiomyocytes. Collectively, the results show that boron positively impacted MI-induced HF and attenuated cardiac fibrosis and apoptosis, two prominent features of HF. Importantly, boron has the potential to induce cardiomyocyte cell cycle entry and potentially cardiac tissue regeneration after injury. Boron might be beneficial as a supplement in MI and may be a good candidate substance for anti-fibrosis approach.


Asunto(s)
Boro/farmacología , Fibrosis/tratamiento farmacológico , Infarto del Miocardio/tratamiento farmacológico , Miocitos Cardíacos/efectos de los fármacos , Remodelación Ventricular/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Cardiomiopatías/tratamiento farmacológico , Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Insuficiencia Cardíaca/tratamiento farmacológico , Miocardio/patología , Ratas , Ratas Sprague-Dawley , Función Ventricular Izquierda/efectos de los fármacos
11.
J Vis Exp ; (160)2020 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-32568218

RESUMEN

Pulmonary Hypertension (PH) is a pathophysiological condition, defined by a mean pulmonary arterial pressure exceeding 25 mm Hg at rest, as assessed by right heart catheterization. A broad spectrum of diseases can lead to PH, differing in their etiology, histopathology, clinical presentation, prognosis, and response to treatment. Despite significant progress in the last years, PH remains an uncured disease. Understanding the underlying mechanisms can pave the way for the development of new therapies. Animal models are important research tools to achieve this goal. Currently, there are several models available for recapitulating PH. This protocol describes a two-hit mouse PH model. The stimuli for PH development are hypoxia and the injection of SU5416, a vascular endothelial growth factor (VEGF) receptor antagonist. Three weeks after initiation of Hypoxia/SU5416, animals develop pulmonary vascular remodeling imitating the histopathological changes observed in human PH (predominantly Group 1). Vascular remodeling in the pulmonary circulation results in the remodeling of the right ventricle (RV). The procedures for measuring RV pressures (using the open chest method), the morphometrical analyses of the RV (by dissecting and weighing both cardiac ventricles) and the histological assessments of the remodeling (both pulmonary by assessing vascular remodeling and cardiac by assessing RV cardiomyocyte hypertrophy and fibrosis) are described in detail. The advantages of this protocol are the possibility of the application both in wild type and in genetically modified mice, the relatively easy and low-cost implementation, and the quick development of the disease of interest (3 weeks). Limitations of this method are that mice do not develop a severe phenotype and PH is reversible upon return to normoxia. Prevention, as well as therapy studies, can easily be implemented in this model, without the necessity of advanced skills (as opposed to surgical rodent models).


Asunto(s)
Hipertensión Pulmonar/inducido químicamente , Hipertensión Pulmonar/patología , Indoles/farmacología , Pirroles/farmacología , Animales , Hipoxia de la Célula/efectos de los fármacos , Modelos Animales de Enfermedad , Fibrosis , Ventrículos Cardíacos/efectos de los fármacos , Ventrículos Cardíacos/fisiopatología , Humanos , Concentración de Iones de Hidrógeno , Hipertensión Pulmonar/complicaciones , Hipertensión Pulmonar/fisiopatología , Hipertrofia Ventricular Derecha/complicaciones , Masculino , Ratones , Arteria Pulmonar/efectos de los fármacos , Arteria Pulmonar/fisiopatología , Circulación Pulmonar/efectos de los fármacos , Factor A de Crecimiento Endotelial Vascular/metabolismo , Remodelación Vascular/efectos de los fármacos , Remodelación Ventricular/efectos de los fármacos
12.
Circulation ; 141(15): 1249-1265, 2020 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-32078387

RESUMEN

BACKGROUND: The adult mammalian heart has limited regenerative capacity, mostly attributable to postnatal cardiomyocyte cell cycle arrest. In the last 2 decades, numerous studies have explored cardiomyocyte cell cycle regulatory mechanisms to enhance myocardial regeneration after myocardial infarction. Pkm2 (Pyruvate kinase muscle isoenzyme 2) is an isoenzyme of the glycolytic enzyme pyruvate kinase. The role of Pkm2 in cardiomyocyte proliferation, heart development, and cardiac regeneration is unknown. METHODS: We investigated the effect of Pkm2 in cardiomyocytes through models of loss (cardiomyocyte-specific Pkm2 deletion during cardiac development) or gain using cardiomyocyte-specific Pkm2 modified mRNA to evaluate Pkm2 function and regenerative affects after acute or chronic myocardial infarction in mice. RESULTS: Here, we identify Pkm2 as an important regulator of the cardiomyocyte cell cycle. We show that Pkm2 is expressed in cardiomyocytes during development and immediately after birth but not during adulthood. Loss of function studies show that cardiomyocyte-specific Pkm2 deletion during cardiac development resulted in significantly reduced cardiomyocyte cell cycle, cardiomyocyte numbers, and myocardial size. In addition, using cardiomyocyte-specific Pkm2 modified RNA, our novel cardiomyocyte-targeted strategy, after acute or chronic myocardial infarction, resulted in increased cardiomyocyte cell division, enhanced cardiac function, and improved long-term survival. We mechanistically show that Pkm2 regulates the cardiomyocyte cell cycle and reduces oxidative stress damage through anabolic pathways and ß-catenin. CONCLUSIONS: We demonstrate that Pkm2 is an important intrinsic regulator of the cardiomyocyte cell cycle and oxidative stress, and highlight its therapeutic potential using cardiomyocyte-specific Pkm2 modified RNA as a gene delivery platform.


Asunto(s)
Proteínas Portadoras/metabolismo , Ciclo Celular/fisiología , Proteínas de la Membrana/metabolismo , Miocitos Cardíacos/metabolismo , Regeneración/fisiología , Hormonas Tiroideas/metabolismo , Animales , Humanos , Ratones , Transfección , Proteínas de Unión a Hormona Tiroide
13.
Mol Ther ; 28(2): 394-410, 2020 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-31879190

RESUMEN

Inhibition of pulmonary fibrosis (PF) by restoring sarco/endoplasmic reticulum calcium ATPase 2a isoform (SERCA2a) expression using targeted gene therapy may be a potentially powerful new treatment approach for PF. Here, we found that SERCA2a expression was significantly decreased in lung samples from patients with PF and in the bleomycin (BLM) mouse model of PF. In the BLM-induced PF model, intratracheal aerosolized adeno-associated virus serotype 1 (AAV1) encoding for human SERCA2a (AAV1.hSERCA2a) reduces lung fibrosis and associated vascular remodeling. SERCA2a gene therapy also decreases right ventricular pressure and hypertrophy in both prevention and curative protocols. In vitro, we observed that SERCA2a overexpression inhibits fibroblast proliferation, migration, and fibroblast-to-myofibroblast transition induced by transforming growth factor ß (TGF-ß1). Thus, pro-fibrotic gene expression is prevented by blocking nuclear factor κB (NF-κB)/interleukin-6 (IL-6)-induced signal transducer and activator of transcription 3 (STAT3) activation. This effect is signaled toward an inhibitory mechanism of small mother against decapentaplegic (SMAD)/TGF-ß signaling through the repression of OTU deubiquitinase, ubiquitin aldehyde binding 1 (OTUB1) and Forkhead box M1 (FOXM1). Interestingly, this cross-inhibition leads to an increase of SKI and SnoN expression, an auto-inhibitory feedback loop of TGF-ß signaling. Collectively, our results demonstrate that SERCA2a gene transfer attenuates bleomycin (BLM)-induced PF by blocking the STAT3/FOXM1 pathway and promoting the SNON/SKI Axis. Thus, SERCA2a gene therapy may be a potential therapeutic target for PF.


Asunto(s)
Dependovirus/genética , Terapia Genética , Vectores Genéticos/genética , Fibrosis Pulmonar/genética , Fibrosis Pulmonar/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , Transducción de Señal , Animales , Proteínas de Unión al ADN/metabolismo , Modelos Animales de Enfermedad , Fibroblastos/metabolismo , Proteína Forkhead Box M1/metabolismo , Expresión Génica , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Fibrosis Pulmonar/terapia , Factor de Transcripción STAT3/metabolismo
14.
Cardiovasc Res ; 116(8): 1500-1513, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31529026

RESUMEN

AIMS: Cyclic adenosine monophosphate (cAMP) is the predominant intracellular second messenger that transduces signals from Gs-coupled receptors. Intriguingly, there is evidence from various cell types that an extracellular cAMP pathway is active in the extracellular space. Herein, we investigated the role of extracellular cAMP in the lung and examined whether it may act on pulmonary vascular cell proliferation and pulmonary vasculature remodelling in the pathogenesis of pulmonary hypertension (PH). METHODS AND RESULTS: The expression of cyclic AMP-metabolizing enzymes was increased in lungs from patients with PH as well as in rats treated with monocrotaline and mice exposed to Sugen/hypoxia. We report that inhibition of the endogenous extracellular cAMP pathway exacerbated Sugen/hypoxia-induced lung remodelling. We found that application of extracellular cAMP induced an increase in intracellular cAMP levels and inhibited proliferation and migration of pulmonary vascular cells in vitro. Extracellular cAMP infusion in two in vivo PH models prevented and reversed pulmonary and cardiac remodelling associated with PH. Using protein expression analysis along with luciferase assays, we found that extracellular cAMP acts via the A2R/PKA/CREB/p53/Cyclin D1 pathway. CONCLUSIONS: Taken together, our data reveal the presence of an extracellular cAMP pathway in pulmonary arteries that attempts to protect the lung during PH, and suggest targeting of the extracellular cAMP signalling pathway to limit pulmonary vascular remodelling and PH.


Asunto(s)
Presión Arterial , AMP Cíclico/metabolismo , Pulmón/enzimología , Hipertensión Arterial Pulmonar/enzimología , Arteria Pulmonar/metabolismo , Sistemas de Mensajero Secundario , Remodelación Vascular , 5'-Nucleotidasa/metabolismo , Animales , Estudios de Casos y Controles , Movimiento Celular , Proliferación Celular , Células Cultivadas , Modelos Animales de Enfermedad , Humanos , Pulmón/fisiopatología , Masculino , Ratones Endogámicos C57BL , Hidrolasas Diéster Fosfóricas/metabolismo , Hipertensión Arterial Pulmonar/fisiopatología , Arteria Pulmonar/fisiopatología , Pirofosfatasas/metabolismo , Ratas Sprague-Dawley , Vías Secretoras
15.
Front Cardiovasc Med ; 6: 157, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31750316

RESUMEN

Coronary microembolization is one of the main causes of the "no-reflow" phenomenon, which commonly occurs after reperfusion of an occluded coronary artery. Given its high incidence and the fact that it has been proven to be an independent predictor of cardiac morbidity and mortality, there is an imperative need to study its underlying mechanisms and pathophysiology. Large animal models are essential to perform translational studies. Currently there is no animal model that recapitulates a clinical scenario of thrombogenic microembolism with preceding myocardial ischemia. Therefore, the goal of this study was to develop and characterize a novel pig model of coronary microembolization using autologous thrombus injection (CMET). Twenty-three pigs underwent myocardial infarction through percutaneous balloon occlusion of the left anterior descending artery (LAD). Each animal was enrolled in one of two groups: (1) the CMET group, in which the LAD occlusion was followed by delivery of autologous clotted blood in the LAD (distal to the balloon occlusion) and reperfusion; (2) the ischemic reperfusion (I/R) group, in which the LAD ischemia was followed by reperfusion. Surviving animals underwent functional and morphological characterization at 1-week post-procedure. Three sham operated animals were used as a control. CMET resulted in impaired left ventricular function compared to I/R pigs at 1 week. Three-dimensional echocardiography demonstrated reduced ejection fraction in the CMET group (CMET vs. I/R: 35.6 ± 4.2% vs. 47.6 ± 2.4%, p = 0.028). Invasive hemodynamic measurements by Swan-Ganz and left ventricular pressure-volume catheters revealed that CMET impaired left ventricular contractility and diastolic function. This was confirmed by both load-dependent indices including cardiac output (CMET vs. I/R: 2.7 ± 0.2 l/min, vs. 4.0 ± 0.1 l/min, p = 0.002) and load independent indices including preload-recruitable stroke work (CMET vs. I/R: 25.8 ± 4.0 vs. 47.5 ± 6.5 mmHg, p = 0.05) and end-diastolic pressure-volume relationship (slope, 0.68 ± 0.07 vs. 0.40 ± 0.11 mmHg/ml, p = 0.01). Our unique closed-chest model of coronary microembolization using autologous thrombus injection resembles the clinical condition of thrombogenic coronary microembolization in I/R injury. This model offers opportunities to conduct translational studies for understanding and treating coronary microembolization in myocardial infarction.

16.
J Vis Exp ; (145)2019 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-30907889

RESUMEN

In this protocol, we detail the correct procedural steps and necessary precautions to successfully perform a left pneumonectomy and induce PAH in rats with the additional administration of monocrotaline (MCT) or SU5416 (Sugen). We also compare these two models to other PAH models commonly used in research. In the last few years, the focus of animal PAH models has moved towards studying the mechanism of angioproliferation of plexiform lesions, in which the role of increased pulmonary blood flow is considered as an important trigger in the development of severe pulmonary vascular remodeling. One of the most promising rodent models of increased pulmonary flow is the unilateral left pneumonectomy combined with a "second hit" of MCT or Sugen. The removal of the left lung leads to increased and turbulent pulmonary blood flow and vascular remodeling. Currently, there is no detailed procedure of the pneumonectomy surgery in rats. This article details a step-by-step protocol of the pneumonectomy surgical procedure and post-operative care in male Sprague-Dawley rats. Briefly, the animal is anesthetized and the chest is opened. Once the left pulmonary artery, pulmonary vein, and bronchus are visualized, they are ligated and the left lung is removed. The chest then closed and the animal recovered. Blood is forced to circulate only on the right lung. This increased vascular pressure leads to a progressive remodeling and occlusion of small pulmonary arteries. The second hit of MCT or Sugen is used one week post-surgery to induce endothelial dysfunction. The combination of increased blood flow in the lung and endothelial dysfunction produces severe PAH. The primary limitation of this procedure is that it requires general surgical skills.


Asunto(s)
Hipertensión Pulmonar/cirugía , Indoles/administración & dosificación , Monocrotalina/administración & dosificación , Neumonectomía , Pirroles/administración & dosificación , Animales , Modelos Animales de Enfermedad , Hipertensión Pulmonar/patología , Pulmón/patología , Masculino , Arteria Pulmonar/patología , Ratas Sprague-Dawley
17.
J Mol Cell Cardiol ; 127: 20-30, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30502350

RESUMEN

BACKGROUND: Pulmonary arterial hypertension (PAH) results in right ventricular (RV) failure, electro-mechanical dysfunction and heightened risk of sudden cardiac death (SCD), although exact mechanisms and predisposing factors remain unclear. Because impaired chronotropic response to exercise is a strong predictor of early mortality in patients with PAH, we hypothesized that progressive elevation in heart rate can unmask ventricular tachyarrhythmias (VT) in a rodent model of monocrotaline (MCT)-induced PAH. We further hypothesized that intra-tracheal gene delivery of aerosolized AAV1.SERCA2a (AAV1.S2a), an approach which improves pulmonary vascular remodeling in PAH, can suppress VT in this model. OBJECTIVE: To determine the efficacy of pulmonary AAV1.S2a in reversing electrophysiological (EP) remodeling and suppressing VT in PAH. METHODS: Male rats received subcutaneous injection of MCT (60 mg/kg) leading to advanced PAH. Three weeks following MCT, rats underwent intra-tracheal delivery of aerosolized AAV1.S2a (MCT + S2a, N = 8) or saline (MCT, N = 9). Age-matched rats served as controls (CTRL, N = 7). The EP substrate and risk of VT were determined using high-resolution optical action potential (AP) mapping ex vivo. The expression levels of key ion channel subunits, fibrosis markers and hypertrophy indices were measured by RT-PCR and histochemical analyses. RESULTS: Over 80% of MCT but none of the CTRL hearts were prone to sustained VT by rapid pacing (P < .01). Aerosolized gene delivery of AAV1.S2a to the lung suppressed the incidence of VT to <15% (P < .05). Investigation of the EP substrate revealed marked prolongation of AP duration (APD), increased APD heterogeneity, a reversal in the trans-epicardial APD gradient, and marked conduction slowing in untreated MCT compared to CTRL hearts. These myocardial EP changes coincided with major remodeling in the expression of K and Ca channel subunits, decreased expression of Cx43 and increased expression of pro-fibrotic and pro-hypertrophic markers. Intra-tracheal gene delivery of aerosolized AAV1 carrying S2a but not luciferase resulted in selective upregulation of the human isoform of SERCA2a in the lung but not the heart. This pulmonary intervention, in turn, ameliorated MCT-induced APD prolongation, reversed spatial APD heterogeneity, normalized myocardial conduction, and suppressed the incidence of pacing-induced VT. Comparison of the minimal conduction velocity (CV) generated at the fastest pacing rate before onset of VT or at the end of the protocol revealed significantly lower values in untreated compared to AAV1.S2a treated PAH and CTRL hearts. Reversal of EP remodeling by pulmonary AAV1.S2a gene delivery was accompanied by restored expression of key ion channel transcripts. Restored expression of Cx43 and collagen but not the pore-forming Na channel subunit Nav1.5 likely ameliorated VT by improving CV at rapid rates in PAH. CONCLUSION: Aerosolized AAV1.S2a gene delivery selectively to the lungs ameliorates myocardial EP remodeling and VT susceptibility at rapid heart rates. Our findings highlight for the first time the utility of a non-cardiac gene therapy approach for arrhythmia suppression.


Asunto(s)
Aerosoles/administración & dosificación , Arritmias Cardíacas/terapia , Técnicas de Transferencia de Gen , Hipertensión Arterial Pulmonar/terapia , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/uso terapéutico , Tráquea/metabolismo , Potenciales de Acción , Animales , Arritmias Cardíacas/complicaciones , Arritmias Cardíacas/fisiopatología , Conexina 43/metabolismo , Modelos Animales de Enfermedad , Terapia Genética , Sistema de Conducción Cardíaco/fisiopatología , Humanos , Masculino , Canales de Potasio/genética , Canales de Potasio/metabolismo , Hipertensión Arterial Pulmonar/complicaciones , Hipertensión Arterial Pulmonar/fisiopatología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas Sprague-Dawley
18.
Circulation ; 139(4): 518-532, 2019 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-29997116

RESUMEN

BACKGROUND: Despite its functional importance in various fundamental bioprocesses, studies of N6-methyladenosine (m6A) in the heart are lacking. Here, we show that the FTO (fat mass and obesity-associated protein), an m6A demethylase, plays a critical role in cardiac contractile function during homeostasis, remodeling, and regeneration. METHODS: We used clinical human samples, preclinical pig and mouse models, and primary cardiomyocyte cell cultures to study the functional role of m6A and FTO in the heart and in cardiomyocytes. We modulated expression of FTO by using adeno-associated virus serotype 9 (in vivo), adenovirus (both in vivo and in vitro), and small interfering RNAs (in vitro) to study its function in regulating cardiomyocyte m6A, calcium dynamics and contractility, and cardiac function postischemia. We performed methylated (m6A) RNA immunoprecipitation sequencing to map transcriptome-wide m6A, and methylated (m6A) RNA immunoprecipitation quantitative polymerase chain reaction assays to map and validate m6A in individual transcripts, in healthy and failing hearts, and in myocytes. RESULTS: We discovered that FTO has decreased expression in failing mammalian hearts and hypoxic cardiomyocytes, thereby increasing m6A in RNA and decreasing cardiomyocyte contractile function. Improving expression of FTO in failing mouse hearts attenuated the ischemia-induced increase in m6A and decrease in cardiac contractile function. This is performed by the demethylation activity of FTO, which selectively demethylates cardiac contractile transcripts, thus preventing their degradation and improving their protein expression under ischemia. In addition, we demonstrate that FTO overexpression in mouse models of myocardial infarction decreased fibrosis and enhanced angiogenesis. CONCLUSIONS: Collectively, our study demonstrates the functional importance of the FTO-dependent cardiac m6A methylome in cardiac contraction during heart failure and provides a novel mechanistic insight into the therapeutic mechanisms of FTO.


Asunto(s)
Adenosina/análogos & derivados , Insuficiencia Cardíaca/enzimología , Infarto del Miocardio/enzimología , Miocitos Cardíacos/enzimología , Regeneración , Función Ventricular Izquierda , Remodelación Ventricular , Adenosina/metabolismo , Adulto , Anciano , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo , Animales , Señalización del Calcio , Estudios de Casos y Controles , Línea Celular , Proliferación Celular , Desmetilación , Modelos Animales de Enfermedad , Femenino , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/fisiopatología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Infarto del Miocardio/genética , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Miocitos Cardíacos/patología , Procesamiento Postranscripcional del ARN , Estabilidad del ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas Sprague-Dawley , Sus scrofa
19.
Eur Heart J ; 40(12): 967-978, 2019 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-29668883

RESUMEN

AIMS: Myocardial fibrosis is associated with profound changes in ventricular architecture and geometry, resulting in diminished cardiac function. There is currently no information on the role of the delta-like homologue 1 (Dlk1) in the regulation of the fibrotic response. Here, we investigated whether Dlk1 is involved in cardiac fibroblast-to-myofibroblast differentiation and regulates myocardial fibrosis and explored the molecular mechanism underpinning its effects in this process. METHODS AND RESULTS: Using Dlk1-knockout mice and adenoviral gene delivery, we demonstrate that overexpression of Dlk1 in cardio-fibroblasts resulted in inhibition of fibroblast proliferation and differentiation into myofibroblasts. This process is mediated by TGF-ß1 signalling, since isolated fibroblasts lacking Dlk1 exhibited a higher activation of the TGF-ß1/Smad-3 pathway at baseline, leading to an earlier acquisition of a myofibroblast phenotype. Likewise, Dlk1-null mice displayed increased TGF-ß1/Smad3 cardiac activity, resulting in infiltration/accumulation of myofibroblasts, induction and deposition of extra-domain A-fibronectin isoform and collagen, and activation of pro-fibrotic markers. Furthermore, these profibrotic events were associated with disrupted myofibril integrity, myocyte hypertrophy, and cardiac dysfunction. Interestingly, Dlk1 expression was down-regulated in ischaemic human and porcine heart tissues. Mechanistically, miR-370 mediated Dlk1's regulation of cardiac fibroblast-myofibroblast differentiation by directly targeting TGFß-R2/Smad-3 signalling, while the Dlk1 canonical target, Notch pathway, does not seem to play a role in this process. CONCLUSION: These findings are the first to demonstrate an inhibitory role of Dlk1 of cardiac fibroblast-to-myofibroblast differentiation by interfering with TGFß/Smad-3 signalling in the myocardium. Given the deleterious effects of continuous activation of this pathway, we propose Dlk1 as a new potential candidate for therapy in cases where aberrant TGFß signalling leads to chronic fibrosis.


Asunto(s)
Proteínas de Unión al Calcio/genética , Fibroblastos/metabolismo , Fibrosis/genética , Miocardio/patología , Miofibroblastos/metabolismo , Animales , Diferenciación Celular , Regulación hacia Abajo , Humanos , Masculino , Ratones , Ratones Noqueados , MicroARNs/metabolismo , Proteína smad3/genética , Porcinos , Factor de Crecimiento Transformador beta1/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...