Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PLoS Genet ; 20(2): e1011159, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38377146

RESUMEN

Common genetic variants in the repressive GATA-family transcription factor (TF) TRPS1 locus are associated with breast cancer risk, and luminal breast cancer cell lines are particularly sensitive to TRPS1 knockout. We introduced an inducible degron tag into the native TRPS1 locus within a luminal breast cancer cell line to identify the direct targets of TRPS1 and determine how TRPS1 mechanistically regulates gene expression. We acutely deplete over 80 percent of TRPS1 from chromatin within 30 minutes of inducing degradation. We find that TRPS1 regulates transcription of hundreds of genes, including those related to estrogen signaling. TRPS1 directly regulates chromatin structure, which causes estrogen receptor alpha (ER) to redistribute in the genome. ER redistribution leads to both repression and activation of dozens of ER target genes. Downstream from these primary effects, TRPS1 depletion represses cell cycle-related gene sets and reduces cell doubling rate. Finally, we show that high TRPS1 activity, calculated using a gene expression signature defined by primary TRPS1-regulated genes, is associated with worse breast cancer patient prognosis. Taken together, these data suggest a model in which TRPS1 modulates the genomic distribution of ER, both activating and repressing transcription of genes related to cancer cell fitness.


Asunto(s)
Neoplasias de la Mama , Cromatina , Dedos , Enfermedades del Cabello , Síndrome de Langer-Giedion , Nariz , Femenino , Humanos , Neoplasias de la Mama/genética , Cromatina/genética , Receptor alfa de Estrógeno/genética , Dedos/anomalías , Factores de Transcripción GATA , Expresión Génica , Genes cdc , Nariz/anomalías , Proteínas Represoras/genética
2.
bioRxiv ; 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37461612

RESUMEN

Breast cancer is the most frequently diagnosed cancer in women. The most common subtype is luminal breast cancer, which is typically driven by the estrogen receptor α (ER), a transcription factor (TF) that activates many genes required for proliferation. Multiple effective therapies target this pathway, but individuals often develop resistance. Thus, there is a need to identify additional targets that regulate ER activity and contribute to breast tumor progression. TRPS1 is a repressive GATA-family TF that is overexpressed in breast tumors. Common genetic variants in the TRPS1 locus are associated with breast cancer risk, and luminal breast cancer cell lines are particularly sensitive to TRPS1 knockout. However, we do not know how TRPS1 regulates target genes to mediate these breast cancer patient and cellular outcomes. We introduced an inducible degron tag into the native TRPS1 locus within a luminal breast cancer cell line to identify the direct targets of TRPS1 and determine how TRPS1 mechanistically regulates gene expression. We acutely deplete over eighty percent of TRPS1 from chromatin within 30 minutes of inducing degradation. We find that TRPS1 regulates transcription of hundreds of genes, including those related to estrogen signaling. TRPS1 directly regulates chromatin structure, which causes ER to redistribute in the genome. ER redistribution leads to both repression and activation of dozens of ER target genes. Downstream from these primary effects, TRPS1 depletion represses cell cycle-related gene sets and reduces cell doubling rate. Finally, we show that high TRPS1 activity, calculated using a gene expression signature defined by primary TRPS1-regulated genes, is associated with worse breast cancer patient prognosis. Taken together, these data suggest a model in which TRPS1 modulates the activity of other TFs, both activating and repressing transcription of genes related to cancer cell fitness.

3.
Genome Biol ; 22(1): 155, 2021 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-33992117

RESUMEN

Nascent RNA profiling is growing in popularity; however, there is no standard analysis pipeline to uniformly process the data and assess quality. Here, we introduce PEPPRO, a comprehensive, scalable workflow for GRO-seq, PRO-seq, and ChRO-seq data. PEPPRO produces uniformly processed output files for downstream analysis and assesses adapter abundance, RNA integrity, library complexity, nascent RNA purity, and run-on efficiency. PEPPRO is restartable and fault-tolerant, records copious logs, and provides a web-based project report. PEPPRO can be run locally or using a cluster, providing a portable first step for genomic nascent RNA analysis.


Asunto(s)
ARN/genética , ARN/normas , Programas Informáticos , Exones/genética , Perfilación de la Expresión Génica , Genoma Humano , Humanos , Intrones/genética , Células K562 , Control de Calidad
4.
Sci Adv ; 7(5)2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33571115

RESUMEN

Ubiquitin protein ligase E3 component N-recognin 7 (UBR7) is the most divergent member of UBR box-containing E3 ubiquitin ligases/recognins that mediate the proteasomal degradation of its substrates through the N-end rule. Here, we used a proteomic approach and found phosphoribosyl pyrophosphate synthetases (PRPSs), the essential enzymes for nucleotide biosynthesis, as strong interacting partners of UBR7. UBR7 stabilizes PRPS catalytic subunits by mediating the polyubiquitination-directed degradation of PRPS-associated protein (PRPSAP), the negative regulator of PRPS. Loss of UBR7 leads to nucleotide biosynthesis defects. We define UBR7 as a transcriptional target of NOTCH1 and show that UBR7 is overexpressed in NOTCH1-driven T cell acute lymphoblastic leukemia (T-ALL). Impaired nucleotide biosynthesis caused by UBR7 depletion was concomitant with the attenuated cell proliferation and oncogenic potential of T-ALL. Collectively, these results establish UBR7 as a critical regulator of nucleotide metabolism through the regulation of the PRPS enzyme complex and uncover a metabolic vulnerability in NOTCH1-driven T-ALL.


Asunto(s)
Nucleótidos , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Receptor Notch1 , Ubiquitina-Proteína Ligasas , Humanos , Nucleótidos/biosíntesis , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Proteómica , Receptor Notch1/genética , Receptor Notch1/metabolismo , Linfocitos T/patología , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
5.
Curr Protoc Mol Biol ; 132(1): e124, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32757370

RESUMEN

Inducible degron systems are widely used to specifically and rapidly deplete proteins of interest in cell lines and organisms. An advantage of inducible degradation is that the biological system under study remains intact and functional until perturbation, a feature that necessitates that the endogenous levels of the protein are maintained. However, endogenous tagging of genes with auxin-inducible degrons (AID) can result in chronic, auxin-independent proteasome-mediated degradation. The ARF-AID (auxin-response factor-auxin-inducible degron) system is a re-engineered auxin-inducible protein degradation system. The additional expression of the ARF-PB1 domain prevents chronic, auxin-independent degradation of AID-tagged proteins while preserving rapid auxin-induced degradation of tagged proteins. Here, we describe the protocol for engineering human cell lines to implement the ARF-AID system for specific and inducible protein degradation. These methods are adaptable and can be extended from cell lines to organisms. © 2020 The Authors. Basic Protocol 1: Generation of ARF-P2A-TIR1 progenitor cells Basic Protocol 2: Designing, cloning, and testing of a gene-specific sgRNA Basic Protocol 3: Design and amplification of a homology-directed repair construct (C-terminal tagging) Alternate Protocol 1: Design and amplification of a homology-directed repair construct (N-terminal tagging) Basic Protocol 4: Tagging of a gene of interest with AID Alternate Protocol 2: Establishment of an ARF-AID clamp system Basic Protocol 5: Testing of auxin-mediated degradation of the AID-tagged protein.


Asunto(s)
Citoplasma/metabolismo , Proteínas/análisis , Proteolisis , Células HEK293 , Humanos
6.
Genes Dev ; 33(19-20): 1441-1455, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31467088

RESUMEN

Rapid perturbation of protein function permits the ability to define primary molecular responses while avoiding downstream cumulative effects of protein dysregulation. The auxin-inducible degron (AID) system was developed as a tool to achieve rapid and inducible protein degradation in nonplant systems. However, tagging proteins at their endogenous loci results in chronic auxin-independent degradation by the proteasome. To correct this deficiency, we expressed the auxin response transcription factor (ARF) in an improved inducible degron system. ARF is absent from previously engineered AID systems but is a critical component of native auxin signaling. In plants, ARF directly interacts with AID in the absence of auxin, and we found that expression of the ARF PB1 (Phox and Bem1) domain suppresses constitutive degradation of AID-tagged proteins. Moreover, the rate of auxin-induced AID degradation is substantially faster in the ARF-AID system. To test the ARF-AID system in a quantitative and sensitive manner, we measured genome-wide changes in nascent transcription after rapidly depleting the ZNF143 transcription factor. Transcriptional profiling indicates that ZNF143 activates transcription in cis and regulates promoter-proximal paused RNA polymerase density. Rapidly inducible degradation systems that preserve the target protein's native expression levels and patterns will revolutionize the study of biological systems by enabling specific and temporally defined protein dysregulation.


Asunto(s)
Técnicas Genéticas , Proteínas/metabolismo , Proteolisis , Línea Celular , Inhibidores de Cisteína Proteinasa/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Células HEK293 , Humanos , Ácidos Indolacéticos/farmacología , Leupeptinas/farmacología , Células MCF-7 , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis/efectos de los fármacos , Transactivadores/genética , Transactivadores/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...