Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Data ; 6(1): 47, 2019 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-31113983

RESUMEN

Due to a typesetting error, 25 rows were omitted from Table 3 in the original version of this Data Descriptor. These missing rows correspond to the following sample names.

2.
Evol Dev ; 21(2): 82-95, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30762281

RESUMEN

Small non-coding RNAs (sRNAs) control bacterial gene expression involved in a wide range of important cellular processes. In the highly social bacterium Myxococcus xanthus, the sRNA Pxr prevents multicellular fruiting-body development when nutrients are abundant. Pxr was discovered from the evolution of a developmentally defective strain (OC) into a developmentally proficient strain (PX). In OC, Pxr is constitutively expressed and blocks development even during starvation. In PX, one mutation deactivates Pxr allowing development to proceed. We screened for transposon mutants that suppress the OC defect and thus potentially reveal new Pxr-pathway components. Insertions significantly restoring development were found in four genes-rnd, rnhA, stkA and Mxan_5793-not previously associated with an sRNA activity. Phylogenetic analysis suggests that the Pxr pathway was constructed within the Cystobacterineae suborder both by co-option of genes predating the Myxococcales order and incorporation of a novel gene (Mxan_5793). Further, the sequence similarity of rnd, rnhA and stkA homologs relative to M. xanthus alleles was found to decrease greatly among species beyond the Cystobacterineae suborder compared to the housekeeping genes examined. Finally, ecological context differentially affected the developmental phenotypes of distinct mutants, with implications for the evolution of development in variable environments.


Asunto(s)
Evolución Molecular , Myxococcus xanthus/genética , ARN Pequeño no Traducido/genética , Genoma Bacteriano , Mutagénesis Insercional , Myxococcus xanthus/crecimiento & desarrollo , Fenotipo , Filogenia
3.
Sci Data ; 5: 180154, 2018 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-30179231

RESUMEN

Prochlorococcus and Synechococcus are the dominant primary producers in marine ecosystems and perform a significant fraction of ocean carbon fixation. These cyanobacteria interact with a diverse microbial community that coexists with them. Comparative genomics of cultivated isolates has helped address questions regarding patterns of evolution and diversity among microbes, but the fraction that can be cultivated is miniscule compared to the diversity in the wild. To further probe the diversity of these groups and extend the utility of reference sequence databases, we report a data set of single cell genomes for 489 Prochlorococcus, 50 Synechococcus, 9 extracellular virus particles, and 190 additional microorganisms from a diverse range of bacterial, archaeal, and viral groups. Many of these uncultivated single cell genomes are derived from samples obtained on GEOTRACES cruises and at well-studied oceanographic stations, each with extensive suites of physical, chemical, and biological measurements. The genomic data reported here greatly increases the number of available Prochlorococcus genomes and will facilitate studies on evolutionary biology, microbial ecology, and biological oceanography.


Asunto(s)
Archaea/genética , Genoma Arqueal , Genoma Bacteriano , Genoma Viral , Prochlorococcus/genética , Synechococcus/genética , Virus/genética , Agua de Mar , Análisis de la Célula Individual , Microbiología del Agua
4.
Sci Data ; 5: 180176, 2018 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-30179232

RESUMEN

Recent advances in understanding the ecology of marine systems have been greatly facilitated by the growing availability of metagenomic data, which provide information on the identity, diversity and functional potential of the microbial community in a particular place and time. Here we present a dataset comprising over 5 terabases of metagenomic data from 610 samples spanning diverse regions of the Atlantic and Pacific Oceans. One set of metagenomes, collected on GEOTRACES cruises, captures large geographic transects at multiple depths per station. The second set represents two years of time-series data, collected at roughly monthly intervals from 3 depths at two long-term ocean sampling sites, Station ALOHA and BATS. These metagenomes contain genomic information from a diverse range of bacteria, archaea, eukaryotes and viruses. The data's utility is strengthened by the availability of extensive physical, chemical, and biological measurements associated with each sample. We expect that these metagenomes will facilitate a wide range of comparative studies that seek to illuminate new aspects of marine microbial ecosystems.


Asunto(s)
Archaea/genética , Bacterias/genética , Eucariontes/genética , Metagenoma , Virus/genética , Océano Atlántico , Biodiversidad , Ecosistema , Metagenómica , Océano Pacífico , Microbiología del Agua
5.
Front Microbiol ; 8: 882, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28588561

RESUMEN

Spatial and temporal patterns in microbial biodiversity across the Amazon river-ocean continuum were investigated along ∼675 km of the lower Amazon River mainstem, in the Tapajós River tributary, and in the plume and coastal ocean during low and high river discharge using amplicon sequencing of 16S rRNA genes in whole water and size-fractionated samples (0.2-2.0 µm and >2.0 µm). River communities varied among tributaries, but mainstem communities were spatially homogeneous and tracked seasonal changes in river discharge and co-varying factors. Co-occurrence network analysis identified strongly interconnected river assemblages during high (May) and low (December) discharge periods, and weakly interconnected transitional assemblages in September, suggesting that this system supports two seasonal microbial communities linked to river discharge. In contrast, plume communities showed little seasonal differences and instead varied spatially tracking salinity. However, salinity explained only a small fraction of community variability, and plume communities in blooms of diatom-diazotroph assemblages were strikingly different than those in other high salinity plume samples. This suggests that while salinity physically structures plumes through buoyancy and mixing, the composition of plume-specific communities is controlled by other factors including nutrients, phytoplankton community composition, and dissolved organic matter chemistry. Co-occurrence networks identified interconnected assemblages associated with the highly productive low salinity near-shore region, diatom-diazotroph blooms, and the plume edge region, and weakly interconnected assemblages in high salinity regions. This suggests that the plume supports a transitional community influenced by immigration of ocean bacteria from the plume edge, and by species sorting as these communities adapt to local environmental conditions. Few studies have explored patterns of microbial diversity in tropical rivers and coastal oceans. Comparison of Amazon continuum microbial communities to those from temperate and arctic systems suggest that river discharge and salinity are master variables structuring a range of environmental conditions that control bacterial communities across the river-ocean continuum.

6.
ISME J ; 11(8): 1852-1864, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28387773

RESUMEN

Metatranscriptomics and metagenomics data sets benchmarked with internal standards were used to characterize the expression patterns for biogeochemically relevant bacterial and archaeal genes mediating carbon, nitrogen, phosphorus and sulfur uptake and metabolism through the salinity gradient of the Amazon River Plume. The genes were identified in 48 metatranscriptomic and metagenomic data sets summing to >500 million quality-controlled reads from six locations in the plume ecosystem. The ratio of transcripts per gene copy (a direct measure of expression made possible by internal standard additions) showed that the free-living bacteria and archaea exhibited only small changes in the expression levels of biogeochemically relevant genes through the salinity and nutrient zones of the plume. In contrast, the expression levels of genes in particle-associated cells varied over orders of magnitude among the stations, with the largest differences measured for genes mediating aspects of nitrogen cycling (nifH, amtB and amoA) and phosphorus acquisition (pstC, phoX and phoU). Taxa varied in their baseline gene expression levels and extent of regulation, and most of the spatial variation in the expression level could be attributed to changes in gene regulation after removing the effect of shifting taxonomic composition. We hypothesize that changes in microbial element cycling along the Amazon River Plume are largely driven by shifting activities of particle-associated cells, with most activities peaking in the mesohaline regions where N2 fixation rates are elevated.


Asunto(s)
Archaea/genética , Bacterias/genética , Metagenómica , Ríos/microbiología , Archaea/metabolismo , Bacterias/metabolismo , Carbono/metabolismo , Ecosistema , Regulación de la Expresión Génica Arqueal , Regulación Bacteriana de la Expresión Génica , Nitrógeno/metabolismo , Fijación del Nitrógeno/genética , Fósforo/metabolismo , Azufre/metabolismo , Transcriptoma
7.
PLoS One ; 11(9): e0160929, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27598790

RESUMEN

The Amazon River has the largest discharge of all rivers on Earth, and its complex plume system fuels a wide array of biogeochemical processes, across a large area of the western tropical North Atlantic. The plume thus stimulates microbial processes affecting carbon sequestration and nutrient cycles at a global scale. Chromosomal gene expression patterns of the 2.0 to 156 µm size-fraction eukaryotic microbial community were investigated in the Amazon River Plume, generating a robust dataset (more than 100 million mRNA sequences) that depicts the metabolic capabilities and interactions among the eukaryotic microbes. Combining classical oceanographic field measurements with metatranscriptomics yielded characterization of the hydrographic conditions simultaneous with a quantification of transcriptional activity and identity of the community. We highlight the patterns of eukaryotic gene expression for 31 biogeochemically significant gene targets hypothesized to be valuable within forecasting models. An advantage to this targeted approach is that the database of reference sequences used to identify the target genes was selectively constructed and highly curated optimizing taxonomic coverage, throughput, and the accuracy of annotations. A coastal diatom bloom highly expressed nitrate transporters and carbonic anhydrase presumably to support high growth rates and enhance uptake of low levels of dissolved nitrate and CO2. Diatom-diazotroph association (DDA: diatoms with nitrogen fixing symbionts) blooms were common when surface salinity was mesohaline and dissolved nitrate concentrations were below detection, and hence did not show evidence of nitrate utilization, suggesting they relied on ammonium transporters to aquire recently fixed nitrogen. These DDA blooms in the outer plume had rapid turnover of the photosystem D1 protein presumably caused by photodegradation under increased light penetration in clearer waters, and increased expression of silicon transporters as silicon became limiting. Expression of these genes, including carbonic anhydrase and transporters for nitrate and phosphate, were found to reflect the physiological status and biogeochemistry of river plume environments. These relatively stable patterns of eukaryotic transcript abundance occurred over modest spatiotemporal scales, with similarity observed in sample duplicates collected up to 2.45 km in space and 120 minutes in time. These results confirm the use of metatranscriptomics as a valuable tool to understand and predict microbial community function.


Asunto(s)
Diatomeas/genética , Metagenoma , Transcriptoma/genética , Microbiología del Agua , Diatomeas/fisiología , Eucariontes/genética , Regulación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Nitrógeno/metabolismo , Fijación del Nitrógeno/genética , Ríos
8.
Microbiome ; 3: 39, 2015 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-26353777

RESUMEN

BACKGROUND: The Amazon River runs nearly 6500 km across the South American continent before emptying into the western tropical North Atlantic Ocean. In terms of both volume and watershed area, it is the world's largest riverine system, affecting elemental cycling on a global scale. RESULTS: A quantitative inventory of genes and transcripts benchmarked with internal standards was obtained at five stations in the lower Amazon River during May 2011. At each station, metagenomes and metatranscriptomes were obtained in duplicate for two microbial size fractions (free-living, 0.2 to 2.0 µm; particle-associated, 2.0 to 297 µm) using 150 × 150 paired-end Illumina sequencing. Forty eight sample datasets were obtained, averaging 15 × 10(6) potential protein-encoding reads each (730 × 10(6) total). Prokaryotic metagenomes and metatranscriptomes were dominated by members of the phyla Actinobacteria, Planctomycetes, Betaproteobacteria, Verrucomicrobia, Nitrospirae, and Acidobacteria. The actinobacterium SCGC AAA027-L06 reference genome recruited the greatest number of reads overall, with this single bin contributing an average of 50 billion genes and 500 million transcripts per liter of river water. Several dominant taxa were unevenly distributed between the free-living and particle-associated size fractions, such as a particle-associated bias for reads binning to planctomycete Schlesneria paludicola and a free-living bias for actinobacterium SCGC AAA027-L06. Gene expression ratios (transcripts to gene copy ratio) increased downstream from Óbidos to Macapá and Belém, indicating higher per cell activity of Amazon River bacteria and archaea as river water approached the ocean. CONCLUSION: This inventory of riverine microbial genes and transcripts, benchmarked with internal standards for full quantitation, provides an unparalleled window into microbial taxa and functions in the globally important Amazon River ecosystem.


Asunto(s)
Metagenoma , Metagenómica , Ríos/microbiología , Estaciones del Año , Transcriptoma , Microbiota
9.
ISME J ; 9(7): 1557-69, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25514535

RESUMEN

Biological N2 fixation is an important nitrogen source for surface ocean microbial communities. However, nearly all information on the diversity and gene expression of organisms responsible for oceanic N2 fixation in the environment has come from targeted approaches that assay only a small number of genes and organisms. Using genomes of diazotrophic cyanobacteria to extract reads from extensive meta-genomic and -transcriptomic libraries, we examined diazotroph diversity and gene expression from the Amazon River plume, an area characterized by salinity and nutrient gradients. Diazotroph genome and transcript sequences were most abundant in the transitional waters compared with lower salinity or oceanic water masses. We were able to distinguish two genetically divergent phylotypes within the Hemiaulus-associated Richelia sequences, which were the most abundant diazotroph sequences in the data set. Photosystem (PS)-II transcripts in Richelia populations were much less abundant than those in Trichodesmium, and transcripts from several Richelia PS-II genes were absent, indicating a prominent role for cyclic electron transport in Richelia. In addition, there were several abundant regulatory transcripts, including one that targets a gene involved in PS-I cyclic electron transport in Richelia. High sequence coverage of the Richelia transcripts, as well as those from Trichodesmium populations, allowed us to identify expressed regions of the genomes that had been overlooked by genome annotations. High-coverage genomic and transcription analysis enabled the characterization of distinct phylotypes within diazotrophic populations, revealed a distinction in a core process between dominant populations and provided evidence for a prominent role for noncoding RNAs in microbial communities.


Asunto(s)
Cianobacterias/metabolismo , Fijación del Nitrógeno/fisiología , Nitrógeno/metabolismo , Ríos/microbiología , Agua de Mar/microbiología , Cianobacterias/genética , Diatomeas/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Fijación del Nitrógeno/genética , Ríos/química , Agua de Mar/química , Transcriptoma
10.
Proc Natl Acad Sci U S A ; 111(30): 11085-90, 2014 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-25024226

RESUMEN

We investigated expression of genes mediating elemental cycling at the microspatial scale in the ocean's largest river plume using, to our knowledge, the first fully quantitative inventory of genes and transcripts. The bacterial and archaeal communities associated with a phytoplankton bloom in Amazon River Plume waters at the outer continental shelf in June 2010 harbored ∼ 1.0 × 10(13) genes and 4.7 × 10(11) transcripts per liter that mapped to several thousand microbial genomes. Genomes from free-living cells were more abundant than those from particle-associated cells, and they generated more transcripts per liter for carbon fixation, heterotrophy, nitrogen and phosphorus uptake, and iron acquisition, although they had lower expression ratios (transcripts ⋅ gene(-1)) overall. Genomes from particle-associated cells contributed more transcripts for sulfur cycling, aromatic compound degradation, and the synthesis of biologically essential vitamins, with an overall twofold up-regulation of expression compared with free-living cells. Quantitatively, gene regulation differences were more important than genome abundance differences in explaining why microenvironment transcriptomes differed. Taxa contributing genomes to both free-living and particle-associated communities had up to 65% of their expressed genes regulated differently between the two, quantifying the extent of transcriptional plasticity in marine microbes in situ. In response to patchiness in carbon, nutrients, and light at the micrometer scale, Amazon Plume microbes regulated the expression of genes relevant to biogeochemical processes at the ecosystem scale.


Asunto(s)
Archaea/metabolismo , Bacterias/metabolismo , Ecosistema , Regulación de la Expresión Génica Arqueal/fisiología , Regulación Bacteriana de la Expresión Génica/fisiología , Ríos/microbiología , Microbiología del Agua
11.
Microbiome ; 2: 17, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24883185

RESUMEN

BACKGROUND: The Amazon River is by far the world's largest in terms of volume and area, generating a fluvial export that accounts for about a fifth of riverine input into the world's oceans. Marine microbial communities of the Western Tropical North Atlantic Ocean are strongly affected by the terrestrial materials carried by the Amazon plume, including dissolved (DOC) and particulate organic carbon (POC) and inorganic nutrients, with impacts on primary productivity and carbon sequestration. RESULTS: We inventoried genes and transcripts at six stations in the Amazon River plume during June 2010. At each station, internal standard-spiked metagenomes, non-selective metatranscriptomes, and poly(A)-selective metatranscriptomes were obtained in duplicate for two discrete size fractions (0.2 to 2.0 µm and 2.0 to 156 µm) using 150 × 150 paired-end Illumina sequencing. Following quality control, the dataset contained 360 million reads of approximately 200 bp average size from Bacteria, Archaea, Eukarya, and viruses. Bacterial metagenomes and metatranscriptomes were dominated by Synechococcus, Prochlorococcus, SAR11, SAR116, and SAR86, with high contributions from SAR324 and Verrucomicrobia at some stations. Diatoms, green picophytoplankton, dinoflagellates, haptophytes, and copepods dominated the eukaryotic genes and transcripts. Gene expression ratios differed by station, size fraction, and microbial group, with transcription levels varying over three orders of magnitude across taxa and environments. CONCLUSIONS: This first comprehensive inventory of microbial genes and transcripts, benchmarked with internal standards for full quantitation, is generating novel insights into biogeochemical processes of the Amazon plume and improving prediction of climate change impacts on the marine biosphere.

12.
Methods Enzymol ; 531: 237-50, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24060124

RESUMEN

Next generation sequencing-enabled metatranscriptomic and metagenomic datasets are providing unprecedented insights into the functional diversity of microbial communities, allowing detection of the genes present in a community as well as differentiation of those being actively transcribed. An emerging challenge of meta-omics approaches is how to quantitatively compare metagenomes and metatranscriptomes collected across spatial and temporal scales, or among treatments in experimental manipulations. Here, we describe the use of internal DNA and mRNA standards in meta-omics methodologies, and highlight how data collected in an absolute framework (per L or per cell) provides increased comparative power and insight into underlying causes of differences between samples.


Asunto(s)
ADN Bacteriano/aislamiento & purificación , Perfilación de la Expresión Génica/normas , Metagenoma/genética , ADN Bacteriano/genética , ADN Bacteriano/normas , Secuenciación de Nucleótidos de Alto Rendimiento , Consorcios Microbianos/genética , ARN Mensajero/aislamiento & purificación , ARN Ribosómico 16S/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...