Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
1.
J Hypertens ; 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39146553

RESUMEN

OBJECTIVE: A high office blood pressure (BP) is associated with cognitive decline. However, evidence of 24-h ambulatory BP monitoring is limited, and no studies have investigated whether longitudinal changes in 24-h BP are associated with cognitive decline. We aimed to test whether higher longitudinal changes in 24-h ambulatory BP measurements are associated with cognitive decline. METHODS: We included 437 dementia-free participants from the Maracaibo Aging Study with prospective data on 24-h ambulatory BP monitoring and cognitive function, which was assessed using the selective reminding test (SRT) and the Mini-Mental State Examination (MMSE). Using multivariate linear mixed regression models, we analyzed the association between longitudinal changes in measures of 24-h ambulatory BP levels and variability with cognitive decline. RESULTS: Over a median follow-up of 4 years (interquartile range, 2-5 years), longitudinal changes in 24-h BP level were not associated with cognitive function (P ≥ 0.09). Higher longitudinal changes in 24-h and daytime BP variability were related to a decline in SRT-delayed recall score; the adjusted scores lowered from -0.10 points [95% confidence interval (CI), -0.16 to -0.04) to -0.07 points (95% CI, -0.13 to -0.02). We observed that a higher nighttime BP variability during follow-up was associated with a decline in the MMSE score (adjusted score lowered from -0.08 to -0.06 points). CONCLUSION: Higher 24-h BP variability, but not BP level, was associated with cognitive decline. Prior to or in the early stages of cognitive decline, 24-h ambulatory BP monitoring might guide strategies to reduce the risk of major dementia-related disorders including Alzheimer's disease.

2.
Alzheimers Dement ; 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39132759

RESUMEN

INTRODUCTION: We investigated the associations of leptin markers with cognitive function and magnetic resonance imaging (MRI) measures of brain atrophy and vascular injury in healthy middle-aged adults. METHODS: We included 2262 cognitively healthy participants from the Framingham Heart Study with neuropsychological evaluation; of these, 2028 also had available brain MRI. Concentrations of leptin, soluble leptin receptor (sOB-R), and their ratio (free leptin index [FLI]), indicating leptin bioavailability, were measured using enzyme-linked immunosorbent assays. Cognitive and MRI measures were derived using standardized protocols. RESULTS: Higher sOB-R was associated with lower fractional anisotropy (FA, ß = -0.114 ± 0.02, p < 0.001), and higher free water (FW, ß = 0.091 ± 0.022, p < 0.001) and peak-width skeletonized mean diffusivity (PSMD, ß = 0.078 ± 0.021, p < 0.001). Correspondingly, higher FLI was associated with higher FA (ß = 0.115 ± 0.027, p < 0.001) and lower FW (ß = -0.096 ± 0.029, p = 0.001) and PSMD (ß = -0.085 ± 0.028, p = 0.002). DISCUSSION: Higher leptin bioavailability was associated with better white matter (WM) integrity in healthy middle-aged adults, supporting the putative neuroprotective role of leptin in late-life dementia risk. HIGHLIGHTS: Higher leptin bioavailability was related to better preservation of white matter microstructure. Higher leptin bioavailability during midlife might confer protection against dementia. Potential benefits might be even stronger for individuals with visceral obesity. DTI measures might be sensitive surrogate markers of subclinical neuropathology.

3.
Alzheimers Dement ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38946675

RESUMEN

INTRODUCTION: We conducted admixture mapping and fine-mapping analyses to identify ancestry-of-origin loci influencing cognitive abilities. METHODS: We estimated the association of local ancestry intervals across the genome with five neurocognitive measures in 7140 diverse Hispanic and Latino adults (mean age 55 years). We prioritized genetic variants in associated loci and tested them for replication in four independent cohorts. RESULTS: We identified nine local ancestry-associated regions for the five neurocognitive measures. There was strong biological support for the observed associations to cognitive function at all loci and there was statistical evidence of independent replication at 4q12, 9p22.1, and 13q12.13. DISCUSSION: Our study identified multiple novel loci harboring genes implicated in cognitive functioning and dementia, and uncovered ancestry-relevant genetic variants. It adds to our understanding of the genetic architecture of cognitive function in Hispanic and Latino adults and demonstrates the power of admixture mapping to discover unique haplotypes influencing cognitive function, complementing genome-wide association studies. HIGHLIGHTS: We identified nine ancestry-of-origin chromosomal regions associated with five neurocognitive traits. In each associated region, we identified single nucleotide polymorphisms (SNPs) that explained, at least in part, the admixture signal and were tested for replication in independent samples of Black, non-Hispanic White, and Hispanic/Latino adults with the same or similar neurocognitive tests. Statistical evidence of independent replication of the prioritized SNPs was observed for three of the nine associations, at chr4q12, chr9p22.1, and chr13q12.13. At all loci, there was strong biological support for the observed associations to cognitive function and dementia, prioritizing genes such as KIT, implicated in autophagic clearance of neurotoxic proteins and on mast cell and microglial-mediated inflammation; SLC24A2, implicated in synaptic plasticity associated with learning and memory; and MTMR6, implicated in phosphoinositide lipids metabolism.

4.
Alzheimers Dement ; 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39039896

RESUMEN

INTRODUCTION: Understanding early neuropathological changes and their associations with cognition may aid dementia prevention. This study investigated associations of cerebral amyloid and tau positron emission tomography (PET) retention with cognition in a predominately middle-aged community-based cohort and examined factors that may modify these relationships. METHODS: 11C-Pittsburgh compound B amyloid and 18F-flortaucipir tau PET imaging were performed. Associations of amyloid and tau PET with cognition were evaluated using linear regression. Interactions with age, apolipoprotein E (APOE) ε4 status, and education were examined. RESULTS: Amyloid and tau PET were not associated with cognition in the overall sample (N = 423; mean: 57 ± 10 years; 50% female). However, younger age (< 55 years) and APOE ε4 were significant effect modifiers, worsening cognition in the presence of higher amyloid and tau. DISCUSSION: Higher levels of Aß and tau may have a pernicious effect on cognition among APOE ε4 carriers and younger adults, suggesting a potential role for targeted early interventions. HIGHLIGHTS: Risk and resilience factors influenced cognitive vulnerability due to Aß and tau. Higher fusiform tau associated with poorer visuospatial skills in younger adults. APOE ε4 interacted with Aß and tau to worsen cognition across multiple domains.

5.
Alzheimers Dement ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38951718

RESUMEN

INTRODUCTION: Vascular contributions to cognitive impairment and dementia (VCID) represent a major factor in cognitive decline in older adults. The present study examined the relationship between cerebrovascular reactivity (CVR) measured by magnetic resonance imaging (MRI) and cognitive function in a multi-site study, using a predefined hypothesis. METHODS: We conducted the study in a total of three analysis sites and 263 subjects. Each site performed an identical CVR MRI procedure using 5% carbon dioxide inhalation. A global cognitive measure of Montreal Cognitive Assessment (MoCA) and an executive function measure of item response theory (IRT) score were used as outcomes. RESULTS: CVR and MoCA were positively associated, and this relationship was reproduced at all analysis sites. CVR was found to be positively associated with executive function. DISCUSSION: The predefined hypothesis on the association between CVR and a global cognitive score was validated in three independent analysis sites, providing support for CVR as a biomarker in VCID. HIGHLIGHTS: This study measured a novel functional index of small arteries referred to as cerebrovascular reactivity (CVR). CVR was positively associated with global cognition in older adults. This finding was observed in three independent cohorts at three sites. Our statistical analysis plan was predefined before beginning data collection.

6.
Cell Rep Med ; 5(5): 101529, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38703765

RESUMEN

The size of the human head is highly heritable, but genetic drivers of its variation within the general population remain unmapped. We perform a genome-wide association study on head size (N = 80,890) and identify 67 genetic loci, of which 50 are novel. Neuroimaging studies show that 17 variants affect specific brain areas, but most have widespread effects. Gene set enrichment is observed for various cancers and the p53, Wnt, and ErbB signaling pathways. Genes harboring lead variants are enriched for macrocephaly syndrome genes (37-fold) and high-fidelity cancer genes (9-fold), which is not seen for human height variants. Head size variants are also near genes preferentially expressed in intermediate progenitor cells, neural cells linked to evolutionary brain expansion. Our results indicate that genes regulating early brain and cranial growth incline to neoplasia later in life, irrespective of height. This warrants investigation of clinical implications of the link between head size and cancer.


Asunto(s)
Estudio de Asociación del Genoma Completo , Cabeza , Neoplasias , Humanos , Cabeza/anatomía & histología , Neoplasias/genética , Neoplasias/patología , Femenino , Masculino , Polimorfismo de Nucleótido Simple/genética , Variación Genética , Tamaño de los Órganos/genética , Transducción de Señal/genética , Adulto , Predisposición Genética a la Enfermedad
7.
JAMA Netw Open ; 7(5): e2412824, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38776079

RESUMEN

Importance: Vascular disease is a treatable contributor to dementia risk, but the role of specific markers remains unclear, making prevention strategies uncertain. Objective: To investigate the causal association between white matter hyperintensity (WMH) burden, clinical stroke, blood pressure (BP), and dementia risk, while accounting for potential epidemiologic biases. Design, Setting, and Participants: This study first examined the association of genetically determined WMH burden, stroke, and BP levels with Alzheimer disease (AD) in a 2-sample mendelian randomization (2SMR) framework. Second, using population-based studies (1979-2018) with prospective dementia surveillance, the genetic association of WMH, stroke, and BP with incident all-cause dementia was examined. Data analysis was performed from July 26, 2020, through July 24, 2022. Exposures: Genetically determined WMH burden and BP levels, as well as genetic liability to stroke derived from genome-wide association studies (GWASs) in European ancestry populations. Main Outcomes and Measures: The association of genetic instruments for WMH, stroke, and BP with dementia was studied using GWASs of AD (defined clinically and additionally meta-analyzed including both clinically diagnosed AD and AD defined based on parental history [AD-meta]) for 2SMR and incident all-cause dementia for longitudinal analyses. Results: In 2SMR (summary statistics-based) analyses using AD GWASs with up to 75 024 AD cases (mean [SD] age at AD onset, 75.5 [4.4] years; 56.9% women), larger WMH burden showed evidence for a causal association with increased risk of AD (odds ratio [OR], 1.43; 95% CI, 1.10-1.86; P = .007, per unit increase in WMH risk alleles) and AD-meta (OR, 1.19; 95% CI, 1.06-1.34; P = .008), after accounting for pulse pressure for the former. Blood pressure traits showed evidence for a protective association with AD, with evidence for confounding by shared genetic instruments. In the longitudinal (individual-level data) analyses involving 10 699 incident all-cause dementia cases (mean [SD] age at dementia diagnosis, 74.4 [9.1] years; 55.4% women), no significant association was observed between larger WMH burden and incident all-cause dementia (hazard ratio [HR], 1.02; 95% CI, 1.00-1.04; P = .07). Although all exposures were associated with mortality, with the strongest association observed for systolic BP (HR, 1.04; 95% CI, 1.03-1.06; P = 1.9 × 10-14), there was no evidence for selective survival bias during follow-up using illness-death models. In secondary analyses using polygenic scores, the association of genetic liability to stroke, but not genetically determined WMH, with dementia outcomes was attenuated after adjusting for interim stroke. Conclusions: These findings suggest that WMH is a primary vascular factor associated with dementia risk, emphasizing its significance in preventive strategies for dementia. Future studies are warranted to examine whether this finding can be generalized to non-European populations.


Asunto(s)
Presión Sanguínea , Enfermedades de los Pequeños Vasos Cerebrales , Demencia , Humanos , Enfermedades de los Pequeños Vasos Cerebrales/genética , Enfermedades de los Pequeños Vasos Cerebrales/epidemiología , Femenino , Masculino , Anciano , Demencia/genética , Demencia/epidemiología , Presión Sanguínea/genética , Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/epidemiología , Accidente Cerebrovascular/genética , Accidente Cerebrovascular/epidemiología , Factores de Riesgo , Predisposición Genética a la Enfermedad , Anciano de 80 o más Años , Estudios Prospectivos
8.
JAMA Neurol ; 81(5): 471-480, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38526486

RESUMEN

Importance: Human brain development and maintenance is under both genetic and environmental influences that likely affect later-life dementia risk. Objective: To examine environmental influences by testing whether time-dependent secular differences occurred in cranial and brain volumes and cortical thickness over birth decades spanning 1930 to 1970. Design, Setting, and Participants: This cross-sectional study used data from the community-based Framingham Heart Study cohort for participants born in the decades 1930 to 1970. Participants did not have dementia or history of stroke and had magnetic resonance imaging (MRI) obtained from March 18, 1999, to November 15, 2019. The final analysis dataset was created in October 2023. Exposure: Years of birth ranging from 1925 to 1968. Main Measures: Cross-sectional analysis of intracranial, cortical gray matter, white matter, and hippocampal volumes as well as cortical surface area and cortical thickness. The secular measure was the decade in which the participant was born. Covariates included age at MRI and sex. Results: The main study cohort consisted of 3226 participants with a mean (SD) age of 57.7 (7.8) years at the time of their MRI. A total of 1706 participants were female (53%) and 1520 (47%) were male. The birth decades ranged from the 1930s to 1970s. Significant trends for larger intracranial, hippocampal, and white matter volumes and cortical surface area were associated with progressive birth decades. Comparing the 1930s birth decade to the 1970s accounted for a 6.6% greater volume (1234 mL; 95% CI, 1220-1248, vs 1321 mL; 95% CI, 1301-1341) for ICV, 7.7% greater volume (441.9 mL; 95% CI, 435.2-448.5, vs 476.3 mL; 95% CI, 467.0-485.7) for white matter, 5.7% greater value (6.51 mL; 95% CI, 6.42-6.60, vs 6.89 mL; 95% CI, 6.77-7.02) for hippocampal volume, and a 14.9% greater value (1933 cm2; 95% CI, 1908-1959, vs 2222 cm2; 95% CI, 2186-2259) for cortical surface area. Repeat analysis applied to a subgroup of 1145 individuals of similar age range born in the 1940s (mean [SD] age, 60.0 [2.8] years) and 1950s (mean [SD] age, 59.0 [2.8] years) resulted in similar findings. Conclusion and Relevance: In this study, secular trends for larger brain volumes suggested improved brain development among individuals born between 1930 and 1970. Early life environmental influences may explain these results and contribute to the declining dementia incidence previously reported in the Framingham Heart Study cohort.


Asunto(s)
Imagen por Resonancia Magnética , Humanos , Femenino , Masculino , Persona de Mediana Edad , Estudios Transversales , Anciano , Tamaño de los Órganos , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Estudios de Cohortes , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/anatomía & histología , Hipocampo/diagnóstico por imagen , Hipocampo/anatomía & histología , Hipocampo/patología , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/patología , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología
10.
Am J Hypertens ; 37(5): 323-333, 2024 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-38294177

RESUMEN

BACKGROUND: Evidence shows that high 24-h blood pressure (BP) variability increases cardiovascular risk. We investigated whether 24-h BP variability relates to mortality and cardiovascular risk due to inherent variability and/or hypertensive loads in 24-h BP. METHODS: A total of 1,050 participants from the Maracaibo Aging Study (mean age, 66 years; women, 67.2%) underwent 24-h ambulatory BP monitoring and were followed between 2001 and 2016. To evaluate inherent BP variability, we used average real variability (ARV) as it captures variability among consecutive BP readings. 24-h systolic BP load was the proportion (%) of systolic BP readings ≥130 mm Hg during the daytime and ≥110 during the nighttime. Our primary endpoint was total mortality and major adverse cardiovascular endpoints (MACE). Statistics included Cox proportional models. RESULTS: During a median follow-up of 8.3 years, 299 participants died and 210 experienced MACE. Each +2 mm Hg (corresponding to 1-standard deviation) higher 24-h systolic ARV (mean value, 9.0 ±â€…2.0 mm Hg) was associated with higher hazard ratios (HRs) for mortality by 1.28-fold (95% confidence interval [CI], 1.14-1.43) and for MACE by 1.24-fold (95% CI, 1.08-1.42). Each 30% higher 24-h systolic BP load (median value, 63%) was associated with mortality and MACE with HRs of 1.29 (95% CI, 1.15-1.46) and 1.28 (95% CI, 1.10-1.48); respectively. After models were additionally adjusted by BP level, only ARV was associated with mortality (HR, 1.17; 95% CI, 1.04-1.33) and MACE (HR, 1.16; 95% CI, 1.00-1.34). CONCLUSIONS: High ARV and hypertensive loads in 24-h systolic BP were associated with mortality and cardiovascular risk, however, only ARV is associated independently of the BP level.


Asunto(s)
Enfermedades Cardiovasculares , Hipertensión , Humanos , Femenino , Anciano , Presión Sanguínea/fisiología , Factores de Riesgo , Hipertensión/complicaciones , Monitoreo Ambulatorio de la Presión Arterial , Factores de Riesgo de Enfermedad Cardiaca
11.
Alzheimers Res Ther ; 16(1): 14, 2024 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-38245754

RESUMEN

BACKGROUND: Uncovering the functional relevance underlying verbal declarative memory (VDM) genome-wide association study (GWAS) results may facilitate the development of interventions to reduce age-related memory decline and dementia. METHODS: We performed multi-omics and pathway enrichment analyses of paragraph (PAR-dr) and word list (WL-dr) delayed recall GWAS from 29,076 older non-demented individuals of European descent. We assessed the relationship between single-variant associations and expression quantitative trait loci (eQTLs) in 44 tissues and methylation quantitative trait loci (meQTLs) in the hippocampus. We determined the relationship between gene associations and transcript levels in 53 tissues, annotation as immune genes, and regulation by transcription factors (TFs) and microRNAs. To identify significant pathways, gene set enrichment was tested in each cohort and meta-analyzed across cohorts. Analyses of differential expression in brain tissues were conducted for pathway component genes. RESULTS: The single-variant associations of VDM showed significant linkage disequilibrium (LD) with eQTLs across all tissues and meQTLs within the hippocampus. Stronger WL-dr gene associations correlated with reduced expression in four brain tissues, including the hippocampus. More robust PAR-dr and/or WL-dr gene associations were intricately linked with immunity and were influenced by 31 TFs and 2 microRNAs. Six pathways, including type I diabetes, exhibited significant associations with both PAR-dr and WL-dr. These pathways included fifteen MHC genes intricately linked to VDM performance, showing diverse expression patterns based on cognitive status in brain tissues. CONCLUSIONS: VDM genetic associations influence expression regulation via eQTLs and meQTLs. The involvement of TFs, microRNAs, MHC genes, and immune-related pathways contributes to VDM performance in older individuals.


Asunto(s)
Estudio de Asociación del Genoma Completo , MicroARNs , Humanos , Anciano , Estudio de Asociación del Genoma Completo/métodos , Multiómica , Memoria , Cognición , Polimorfismo de Nucleótido Simple/genética
12.
Neurology ; 102(4): e208075, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38290090

RESUMEN

BACKGROUND AND OBJECTIVES: Higher YKL-40 levels in the CSF are a known biomarker of brain inflammation. We explored the utility of plasma YKL-40 as a biomarker for accelerated brain aging and dementia risk. METHODS: We performed cross-sectional and prospective analyses of 4 community-based cohorts in the United States or Europe: the Age, Gene/Environment Susceptibility-Reykjavik Study, Atherosclerosis Risk in the Communities study, Coronary Artery Risk Development in Young Adults study, and Framingham Heart Study (FHS). YKL-40 was measured from stored plasma by a single laboratory using Mesoscale Discovery with levels log transformed and standardized within each cohort. Outcomes included MRI total brain volume, hippocampal volume, and white matter hyperintensity volume (WMHV) as a percentage of intracranial volume, a general cognitive composite derived from neuropsychological testing (SD units [SDU]), and the risk of incident dementia. We sought to replicate associations with dementia in the clinic-based ACE csf cohort, which also had YKL-40 measured from the CSF. RESULTS: Meta-analyses of MRI outcomes included 6,558 dementia-free participants, and for analysis of cognition, 6,670. The blood draw preceded MRI/cognitive assessment by up to 10.6 years across cohorts. The mean ages ranged from 50 to 76 years, with 39%-48% male individuals. In random-effects meta-analysis of study estimates, each SDU increase in log-transformed YKL-40 levels was associated with smaller total brain volume (ß = -0.33; 95% CI -0.45 to -0.22; p < 0.0001) and poorer cognition (ß = -0.04; 95% CI -0.07 to -0.02; p < 0.01), following adjustments for demographic variables. YKL-40 levels did not associate with hippocampal volume or WMHV. In the FHS, each SDU increase in log YKL-40 levels was associated with a 64% increase in incident dementia risk over a median of 5.8 years of follow-up, following adjustments for demographic variables (hazard ratio 1.64; 95% CI 1.25-2.16; p < 0.001). In the ACE csf cohort, plasma and CSF YKL-40 were correlated (r = 0.31), and both were associated with conversion from mild cognitive impairment to dementia, independent of amyloid, tau, and neurodegeneration status. DISCUSSION: Higher plasma YKL-40 levels were associated with lower brain volume, poorer cognition, and incident dementia. Plasma YKL-40 may be useful for studying the association of inflammation and its treatment on dementia risk.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Demencia , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Biomarcadores , Encéfalo/diagnóstico por imagen , Proteína 1 Similar a Quitinasa-3 , Cognición , Estudios Transversales , Demencia/diagnóstico por imagen , Imagen por Resonancia Magnética , Estudios Prospectivos
13.
medRxiv ; 2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-38260412

RESUMEN

We rigorously assessed a comprehensive association testing framework for heteroplasmy, employing both simulated and real-world data. This framework employed a variant allele fraction (VAF) threshold and harnessed multiple gene-based tests for robust identification and association testing of heteroplasmy. Our simulation studies demonstrated that gene-based tests maintained an appropriate type I error rate at α=0.001. Notably, when 5% or more heteroplasmic variants within a target region were linked to an outcome, burden-extension tests (including the adaptive burden test, variable threshold burden test, and z-score weighting burden test) outperformed the sequence kernel association test (SKAT) and the original burden test. Applying this framework, we conducted association analyses on whole-blood derived heteroplasmy in 17,507 individuals of African and European ancestries (31% of African Ancestry, mean age of 62, with 58% women) with whole genome sequencing data. We performed both cohort- and ancestry-specific association analyses, followed by meta-analysis on both pooled samples and within each ancestry group. Our results suggest that mtDNA-encoded genes/regions are likely to exhibit varying rates in somatic aging, with the notably strong associations observed between heteroplasmy in the RNR1 and RNR2 genes (p<0.001) and advance aging by the Original Burden test. In contrast, SKAT identified significant associations (p<0.001) between diabetes and the aggregated effects of heteroplasmy in several protein-coding genes. Further research is warranted to validate these findings. In summary, our proposed statistical framework represents a valuable tool for facilitating association testing of heteroplasmy with disease traits in large human populations.

14.
Hypertension ; 81(1): 87-95, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37855140

RESUMEN

BACKGROUND: Hypertension is the most potent stroke risk factor and is also related to cerebral small vessel disease. We studied the relation between mid-to-late-life hypertension trends and cerebral white matter injury in community-dwelling individuals from the FHS (Framingham Heart Study). METHODS: FHS Offspring cohort participants with available mid-life and late-life blood pressure measurements and brain magnetic resonance imaging were included. Multiple regression analyses were used to relate hypertension trends (normotension-normotension [reference], normotension-hypertension, and hypertension-hypertension) to white matter injury metrics on diffusion tensor imaging (free water, fractional anisotropy, and peak skeletonized mean diffusivity) and Fluid Attenuated Inversion Recovery (white matter hyperintensity volume) by different blood pressure cutoffs (130/80, 140/90, and 150/90 mm Hg). RESULTS: We included 1018 participants (mean age 47.3±7.4 years at mid-life and 73.2±7.3 at late-life). At the 140/90 mm Hg cutoff, the hypertension-hypertension trend was associated with higher free water (ß, 0.16 [95% CI, 0.03-0.30]; P=0.021) and peak skeletonized mean diffusivity (ß, 0.15 [95% CI, 0.01-0.29]; P=0.033). At a 130/80 mm Hg cutoff, the hypertension-hypertension trend had significantly higher free water (ß, 0.16 [95% CI, 0.01-0.30]; P=0.035); and the normotension-hypertension (ß, 0.24 [95% CI, 0.03-0.44]; P=0.027) and hypertension-hypertension (ß, 0.22 [95% CI, 0.04-0.41]; P=0.022) trends had significantly increased white matter hyperintensity volume. Exploratory stratified analysis showed effect modifications by APOE ɛ4 allele and age. CONCLUSIONS: Mid-to-late-life hypertension exposure is significantly associated with microstructural and to a lesser extent, visible white matter injury; the effects are observed at both conventional and lower blood pressure cutoffs and are associated with longer duration of hypertension.


Asunto(s)
Lesiones Encefálicas , Hipertensión , Sustancia Blanca , Humanos , Adulto , Persona de Mediana Edad , Imagen de Difusión Tensora/métodos , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Encéfalo , Imagen por Resonancia Magnética/métodos , Estudios Longitudinales , Lesiones Encefálicas/patología , Agua
15.
Geroscience ; 46(1): 505-516, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37530894

RESUMEN

We investigated the associations of plasma neurofilament light (NfL), glial fibrillary acidic protein (GFAP), and total tau (t-tau) with markers of cerebral small vessel disease (SVD) and with incident dementia. We also investigated whether associations of NfL, GFAP, and t-tau with incident dementia were explained by SVD. Data are from a random subsample (n = 1069) of the population-based AGES-Reykjavik Study who underwent brain MRI and in whom plasma NfL, GFAP, and t-tau were measured at baseline (76.1 ± 5.4 years/55.9% women/baseline 2002-2006/follow-up until 2015). A composite SVD burden score was calculated using white matter hyperintensity volume (WMHV), subcortical infarcts, cerebral microbleeds, and large perivascular spaces. Dementia was assessed in a 3-step process and adjudicated by specialists. Higher NfL was associated with a higher SVD burden score. Dementia occurred in 225 (21.0%) individuals. The SVD burden score significantly explained part of the association between NfL and incident dementia. WMHV mostly strongly contributed to the explained effect. GFAP was not associated with the SVD burden score, but was associated with WMHV, and WMHV significantly explained part of the association between GFAP and incident dementia. T-tau was associated with WMHV, but not with incident dementia. In conclusion, the marker most strongly related to SVD is plasma NfL, for which the association with WMHV appeared to explain part of its association with incident dementia. This study suggests that plasma NfL may reflect the contribution of co-morbid vascular disease to dementia. However, the magnitude of the explained effect was relatively small, and further research is required to investigate the clinical implications of this finding.


Asunto(s)
Enfermedades de los Pequeños Vasos Cerebrales , Demencia , Femenino , Humanos , Masculino , Enfermedades de los Pequeños Vasos Cerebrales/epidemiología , Demencia/epidemiología , Proteína Ácida Fibrilar de la Glía , Filamentos Intermedios , Imagen por Resonancia Magnética , Proteínas tau/metabolismo
16.
Alzheimers Dement ; 20(3): 1881-1893, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38147416

RESUMEN

INTRODUCTION: Early risk stratification for clinical dementia could lead to preventive therapies. We identified and validated a magnetic resonance imaging (MRI) signature for Alzheimer's disease (AD) and related dementias (ARDR). METHODS: An MRI ADRD signature was derived from cortical thickness maps in Framingham Heart Study (FHS) participants with AD dementia and matched controls. The signature was related to the risk of ADRD and cognitive function in FHS. Results were replicated in the University of California Davis Alzheimer's Disease Research Center (UCD-ADRC) cohort. RESULTS: Participants in the bottom quartile of the signature had more than three times increased risk for ADRD compared to those in the upper three quartiles (P < 0.001). Greater thickness in the signature was related to better general cognition (P < 0.01) and episodic memory (P = 0.01). Results replicated in UCD-ADRC. DISCUSSION: We identified a robust neuroimaging biomarker for persons at increased risk of ADRD. Other cohorts will further test the validity of this biomarker.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/patología , Neuroimagen/métodos , Estudios Longitudinales , Biomarcadores , Medición de Riesgo
17.
Commun Biol ; 6(1): 1117, 2023 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-37923804

RESUMEN

Identifying circulating proteins associated with cognitive function may point to biomarkers and molecular process of cognitive impairment. Few studies have investigated the association between circulating proteins and cognitive function. We identify 246 protein measures quantified by the SomaScan assay as associated with cognitive function (p < 4.9E-5, n up to 7289). Of these, 45 were replicated using SomaScan data, and three were replicated using Olink data at Bonferroni-corrected significance. Enrichment analysis linked the proteins associated with general cognitive function to cell signaling pathways and synapse architecture. Mendelian randomization analysis implicated higher levels of NECTIN2, a protein mediating viral entry into neuronal cells, with higher Alzheimer's disease (AD) risk (p = 2.5E-26). Levels of 14 other protein measures were implicated as consequences of AD susceptibility (p < 2.0E-4). Proteins implicated as causes or consequences of AD susceptibility may provide new insight into the potential relationship between immunity and AD susceptibility as well as potential therapeutic targets.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Persona de Mediana Edad , Humanos , Anciano , Cognición , Neuronas , Biomarcadores
18.
J Alzheimers Dis ; 96(4): 1767-1780, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38007645

RESUMEN

BACKGROUND: Alzheimer's disease and related dementias (ADRD) involve biological processes that begin years to decades before onset of clinical symptoms. The plasma proteome can offer insight into brain aging and risk of incident dementia among cognitively healthy adults. OBJECTIVE: To identify biomarkers and biological pathways associated with neuroimaging measures and incident dementia in two large community-based cohorts by applying a correlation-based network analysis to the plasma proteome. METHODS: Weighted co-expression network analysis of 1,305 plasma proteins identified four modules of co-expressed proteins, which were related to MRI brain volumes and risk of incident dementia over a median 20-year follow-up in Framingham Heart Study (FHS) Offspring cohort participants (n = 1,861). Analyses were replicated in the Cardiovascular Health Study (CHS) (n = 2,117, mean 6-year follow-up). RESULTS: Two proteomic modules, one related to protein clearance and synaptic maintenance (M2) and a second to inflammation (M4), were associated with total brain volume in FHS (M2: p = 0.014; M4: p = 4.2×10-5). These modules were not significantly associated with hippocampal volume, white matter hyperintensities, or incident all-cause or AD dementia. Associations with TCBV did not replicate in CHS, an older cohort with a greater burden of comorbidities. CONCLUSIONS: Proteome networks implicate an early role for biological pathways involving inflammation and synaptic function in preclinical brain atrophy, with implications for clinical dementia.


Asunto(s)
Enfermedad de Alzheimer , Demencia , Humanos , Demencia/diagnóstico por imagen , Proteoma , Proteómica , Encéfalo/diagnóstico por imagen , Envejecimiento , Biomarcadores , Imagen por Resonancia Magnética , Inflamación
19.
medRxiv ; 2023 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-37790435

RESUMEN

Importance: There is increasing recognition that vascular disease, which can be treated, is a key contributor to dementia risk. However, the contribution of specific markers of vascular disease is unclear and, as a consequence, optimal prevention strategies remain unclear. Objective: To disentangle the causal relation of several key vascular traits to dementia risk: (i) white matter hyperintensity (WMH) burden, a highly prevalent imaging marker of covert cerebral small vessel disease (cSVD); (ii) clinical stroke; and (iii) blood pressure (BP), the leading risk factor for cSVD and stroke, for which efficient therapies exist. To account for potential epidemiological biases inherent to late-onset conditions like dementia. Design Setting and Participants: This study first explored the association of genetically determined WMH, BP levels and stroke risk with AD using summary-level data from large genome-wide association studies (GWASs) in a two-sample Mendelian randomization (MR) framework. Second, leveraging individual-level data from large longitudinal population-based cohorts and biobanks with prospective dementia surveillance, the association of weighted genetic risk scores (wGRSs) for WMH, BP, and stroke with incident all-cause-dementia was explored using Cox-proportional hazard and multi-state models. The data analysis was performed from July 26, 2020, through July 24, 2022. Exposures: Genetically determined levels of WMH volume and BP (systolic, diastolic and pulse blood pressures) and genetic liability to stroke. Main outcomes and measures: The summary-level MR analyses focused on the outcomes from GWAS of clinically diagnosed AD (n-cases=21,982) and GWAS additionally including self-reported parental history of dementia as a proxy for AD diagnosis (ADmeta, n-cases=53,042). For the longitudinal analyses, individual-level data of 157,698 participants with 10,699 incident all-cause-dementia were studied, exploring AD, vascular or mixed dementia in secondary analyses. Results: In the two-sample MR analyses, WMH showed strong evidence for a causal association with increased risk of ADmeta (OR, 1.16; 95%CI:1.05-1.28; P=.003) and AD (OR, 1.28; 95%CI:1.07-1.53; P=.008), after accounting for genetically determined pulse pressure for the latter. Genetically predicted BP traits showed evidence for a protective association with both clinically defined AD and ADmeta, with evidence for confounding by shared genetic instruments. In longitudinal analyses the wGRSs for WMH, but not BP or stroke, showed suggestive association with incident all-cause-dementia (HR, 1.02; 95%CI:1.00-1.04; P=.06). BP and stroke wGRSs were strongly associated with mortality but there was no evidence for selective survival bias during follow-up. In secondary analyses, polygenic scores with more liberal instrument definition showed association of both WMH and stroke with all-cause-dementia, AD, and vascular or mixed dementia; associations of stroke, but not WMH, with dementia outcomes were markedly attenuated after adjusting for interim stroke. Conclusion: These findings provide converging evidence that WMH is a leading vascular contributor to dementia risk, which may better capture the brain damage caused by BP (and other etiologies) than BP itself and should be targeted in priority for dementia prevention in the population.

20.
Clin Epigenetics ; 15(1): 173, 2023 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-37891690

RESUMEN

BACKGROUND: Insulin resistance (IR) is a major risk factor for Alzheimer's disease (AD) dementia. The mechanisms by which IR predisposes to AD are not well-understood. Epigenetic studies may help identify molecular signatures of IR associated with AD, thus improving our understanding of the biological and regulatory mechanisms linking IR and AD. METHODS: We conducted an epigenome-wide association study of IR, quantified using the homeostatic model assessment of IR (HOMA-IR) and adjusted for body mass index, in 3,167 participants from the Framingham Heart Study (FHS) without type 2 diabetes at the time of blood draw used for methylation measurement. We identified DNA methylation markers associated with IR at the genome-wide level accounting for multiple testing (P < 1.1 × 10-7) and evaluated their association with neurological traits in participants from the FHS (N = 3040) and the Religious Orders Study/Memory and Aging Project (ROSMAP, N = 707). DNA methylation profiles were measured in blood (FHS) or dorsolateral prefrontal cortex (ROSMAP) using the Illumina HumanMethylation450 BeadChip. Linear regressions (ROSMAP) or mixed-effects models accounting for familial relatedness (FHS) adjusted for age, sex, cohort, self-reported race, batch, and cell type proportions were used to assess associations between DNA methylation and neurological traits accounting for multiple testing. RESULTS: We confirmed the strong association of blood DNA methylation with IR at three loci (cg17901584-DHCR24, cg17058475-CPT1A, cg00574958-CPT1A, and cg06500161-ABCG1). In FHS, higher levels of blood DNA methylation at cg00574958 and cg17058475 were both associated with lower IR (P = 2.4 × 10-11 and P = 9.0 × 10-8), larger total brain volumes (P = 0.03 and P = 9.7 × 10-4), and smaller log lateral ventricular volumes (P = 0.07 and P = 0.03). In ROSMAP, higher levels of brain DNA methylation at the same two CPT1A markers were associated with greater risk of cognitive impairment (P = 0.005 and P = 0.02) and higher AD-related indices (CERAD score: P = 5 × 10-4 and 0.001; Braak stage: P = 0.004 and P = 0.01). CONCLUSIONS: Our results suggest potentially distinct epigenetic regulatory mechanisms between peripheral blood and dorsolateral prefrontal cortex tissues underlying IR and AD at CPT1A locus.


Asunto(s)
Enfermedad de Alzheimer , Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Humanos , Enfermedad de Alzheimer/genética , Diabetes Mellitus Tipo 2/genética , Metilación de ADN , Epigénesis Genética , Marcadores Genéticos , Estudio de Asociación del Genoma Completo/métodos , Resistencia a la Insulina/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...