Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 8978, 2024 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637685

RESUMEN

tRNA modifications play a crucial role in ensuring accurate codon recognition and optimizing translation levels. While the significance of these modifications in eukaryotic cells for maintaining cellular homeostasis and physiological functions is well-established, their physiological roles in bacterial cells, particularly in pathogenesis, remain relatively unexplored. The TusDCB protein complex, conserved in γ-proteobacteria like Escherichia coli, is involved in sulfur modification of specific tRNAs. This study focused on the role of TusDCB in the virulence of uropathogenic E. coli (UPEC), a bacterium causing urinary tract infections. The findings indicate that TusDCB is essential for optimal production of UPEC's virulence factors, including type 1 fimbriae and flagellum, impacting the bacterium's ability to aggregate in bladder epithelial cells. Deletion of tusDCB resulted in decreased virulence against urinary tract infection mice. Moreover, mutant TusDCB lacking sulfur transfer activity and tusE- and mnmA mutants revealed the indispensability of TusDCB's sulfur transfer activity for UPEC pathogenicity. The study extends its relevance to highly pathogenic, multidrug-resistant strains, where tusDCB deletion reduced virulence-associated bacterial aggregation. These insights not only deepen our understanding of the interplay between tRNA sulfur modification and bacterial pathogenesis but also highlight TusDCB as a potential therapeutic target against UPEC strains resistant to conventional antimicrobial agents.


Asunto(s)
Infecciones por Escherichia coli , Proteínas de Escherichia coli , Infecciones Urinarias , Escherichia coli Uropatógena , Animales , Ratones , Virulencia/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Infecciones por Escherichia coli/microbiología , Infecciones Urinarias/microbiología , Factores de Virulencia/genética , Transferasas/metabolismo
2.
Mol Ther Methods Clin Dev ; 32(1): 101185, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38282896

RESUMEN

The production of cell-type- and age-specific genetically modified mice is a powerful approach for unraveling unknown gene functions. Here, we present a simple and timesaving method that enables adeno-associated virus (AAV)-mediated cell-type- and age-specific recombination in floxed mice. To achieve astrocyte-specific recombination in floxed Ai14 reporter mice, we intravenously injected blood-brain barrier-penetrating AAV-PHP.eB vectors expressing Cre recombinase (Cre) using the astrocyte-specific mouse glial fibrillary acidic protein (mGfaABC1D) promoter. However, we observed nonspecific neuron-predominant transduction despite the use of an astrocyte-specific promoter. We speculated that subtle but continuous Cre expression in nonastrocytic cells triggers recombination, and that excess production of Cre in astrocytes inhibits recombination by forming Cre-DNA aggregates. Here, we resolved this paradoxical event by dividing a single AAV into two mGfaABC1D-promoter-driven AAV vectors, one expressing codon-optimized flippase (FlpO) and another expressing flippase recognition target-flanked rapidly degrading Cre (dCre), together with switching the neuron-tropic PHP.eB capsid to astrocyte-tropic AAV-F. Moreover, we found that the FlpO-dCre system with a target cell-tropic capsid can also function in neuron-targeting recombination in floxed mice.

3.
Microbiol Spectr ; 11(3): e0506922, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37199605

RESUMEN

Fosfomycin is used to treat a variety of bacterial infections, including urinary tract infections caused by Escherichia coli. In recent years, quinolone-resistant and extended-spectrum ß-lactamase (ESBL)-producing bacteria have been increasing. Because fosfomycin is effective against many of these drug-resistant bacteria, the clinical importance of fosfomycin is increasing. Against this background, information on the mechanisms of resistance and the antimicrobial activity of this drug is desired to enhance the usefulness of fosfomycin therapy. In this study, we aimed to explore novel factors affecting the antimicrobial activity of fosfomycin. Here, we found that ackA and pta contribute to fosfomycin activity against E. coli. ackA and pta mutant E. coli had reduced fosfomycin uptake capacity and became less sensitive to this drug. In addition, ackA and pta mutants had decreased expression of glpT that encodes one of the fosfomycin transporters. Expression of glpT is enhanced by a nucleoid-associated protein, Fis. We found that mutations in ackA and pta also caused a decrease in fis expression. Thus, we interpret the decrease in glpT expression in ackA and pta defective strains to be due to a decrease in Fis levels in these mutants. Furthermore, ackA and pta are conserved in multidrug-resistant E. coli isolated from patients with pyelonephritis and enterohemorrhagic E. coli, and deletion of ackA and pta from these strains resulted in decreased susceptibility to fosfomycin. These results suggest that ackA and pta in E. coli contribute to fosfomycin activity and that mutation of these genes may pose a risk of reducing the effect of fosfomycin. IMPORTANCE The spread of drug-resistant bacteria is a major threat in the field of medicine. Although fosfomycin is an old type of antimicrobial agent, it has recently come back into the limelight because of its effectiveness against many drug-resistant bacteria, including quinolone-resistant and ESBL-producing bacteria. Since fosfomycin is taken up into the bacteria by GlpT and UhpT transporters, its antimicrobial activity fluctuates with changes in GlpT and UhpT function and expression. In this study, we found that inactivation of the ackA and pta genes responsible for the acetic acid metabolism system reduced GlpT expression and fosfomycin activity. In other words, this study shows a new genetic mutation that leads to fosfomycin resistance in bacteria. The results of this study will lead to further understanding of the mechanism of fosfomycin resistance and the creation of new ideas to enhance fosfomycin therapy.


Asunto(s)
Infecciones por Escherichia coli , Fosfomicina , Infecciones Urinarias , Humanos , Fosfomicina/farmacología , Escherichia coli , Antibacterianos/uso terapéutico , Infecciones por Escherichia coli/tratamiento farmacológico , Infecciones por Escherichia coli/microbiología , Infecciones Urinarias/tratamiento farmacológico , Infecciones Urinarias/microbiología , Proteínas de Transporte de Membrana/genética , Pruebas de Sensibilidad Microbiana , beta-Lactamasas/genética , beta-Lactamasas/metabolismo
4.
Artículo en Inglés | MEDLINE | ID: mdl-35886213

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) and volatile organic compounds (VOCs) are widespread across the globe, existing in the environment in complex mixtures potentially capable of initiating respiratory illnesses. Here, we use an in silico approach to evaluate the potential pro-inflammatory effects of various carcinogenic PAHs and VOCs through their binding affinity towards the human toll-like receptor 4 (TLR4). For receptors and ligands, RCSB Protein Data Bank and PubChem were used in obtaining their 3D structures, respectively. Autodock Vina was utilized to obtain the best docking poses and binding affinities of each PAH and VOC. Out of the 14 PAHs included in this study, indeno(1,2,3-cd)pyrene, benzo(ghi)perylene, and benzo[a]pyrene had the highest binding affinity values of -10, -9, and -8.9 kcal/mol, respectively. For the VOCs, out of the 10 compounds studied, benzene, 1,4-dichlorobenzene, and styrene had the highest binding affinity values of -3.6, -3.9, and -4.6 kcal/mol, respectively. Compounds with higher affinity than LPS (-4.1 kcal/com) could potentially induce inflammation, while compounds with lower affinity would be less likely to induce an inflammatory response. Meanwhile, molecular dynamics simulation and RMSF statistical analysis proved that the protein, TLR4, stably preserve its conformation despite ligand interactions. Overall, the structure of the TLR4 was considered inflexible.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Compuestos Orgánicos Volátiles , Benzo(a)pireno/toxicidad , Humanos , Hidrocarburos Policíclicos Aromáticos/metabolismo , Hidrocarburos Policíclicos Aromáticos/toxicidad , Receptor Toll-Like 4
5.
Biosci Biotechnol Biochem ; 78(7): 1199-202, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25229858

RESUMEN

Saccharomyces cerevisiae Ypq1p is a vacuolar membrane protein of the PQ-loop protein family. We found that ATP-dependent uptake activities of amino acids by vacuolar membrane vesicles were impaired by ypq1∆ mutation. Loss of lysine uptake was most remarkable, and the uptake was recovered by overproduction of Ypq1p. Ypq1p is thus involved in transport of amino acids into vacuoles.


Asunto(s)
Adenosina Trifosfato/metabolismo , Membranas Intracelulares/metabolismo , Lisina/metabolismo , Proteínas de la Membrana/metabolismo , Mutación , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Vacuolas/metabolismo , Transporte Biológico/genética , Proteínas de la Membrana/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...