Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Photochem Photobiol ; 98(1): 242-247, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34324712

RESUMEN

Recent studies have implicated subcellular microvesicle particles (MVP) in the ability of ultraviolet B radiation to exert both local and systemic effects. Indeed, UVB generates MVP (UVB-MVP) in human skin and systemically following phototherapy. The current studies were designed to test the hypothesis that the ability of UVB to generate MVP was dependent upon reactive oxygen species (ROS). To that end, we tested urine samples from subjects undergoing UVB phototherapy for the presence of isoprostanes as well as the oxidized guanosine derivative 8OHdG. We also conducted a clinical study in which volar forearms of subjects were treated with localized UVB and erythema/MVP measured. The same cohort was then treated with 7 days of vitamin C (2 g day-1 ) and vitamin E (1000 IU day-1 ), and UVB-induced MVPs tested on the contralateral forearm. Urine specimens from subjects undergoing phototherapy were found to have increased levels of isoprostanes and 8OHdG, with maximal levels noted 8-16 h post-treatment. Treatment with antioxidant vitamins resulted in diminished UVB-generated skin MVP to baseline levels. These studies suggest that whole-body UVB generates a systemic pro-oxidative response, and that antioxidants can attenuate localized skin UVB-MVPs.


Asunto(s)
Rayos Ultravioleta , Terapia Ultravioleta , 8-Hidroxi-2'-Desoxicoguanosina , Humanos , Isoprostanos , Especies Reactivas de Oxígeno , Piel/efectos de la radiación , Terapia Ultravioleta/métodos
2.
J Skin Cancer ; 2021: 9920558, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34306760

RESUMEN

Actinic keratoses (AK), also known as solar keratoses, are precancerous hyperkeratotic papules caused by long-term exposure to ultraviolet radiation. Management of AK prior to progression to cutaneous malignancy represents an important window of intervention. This is important on a population level, given the high incidence, morbidity, financial costs, and the low but measurable risk of mortality from cutaneous neoplasia. Treatments for AK have been refined for many years with significant progress over the past decade. Those recent advancements lead to questions about current treatment paradigms and the role of harnessing the immune system in field therapies. Recent studies suggest a key interplay between vitamin D and cancer immunity; in particular, the systemic and/or topical vitamin D analogs can augment field therapies used for severe actinic damage. In this review, we will examine the literature supporting the use of vitamin D-directed therapies to improve field therapy approaches. An enhanced understanding of these recent concepts with a focus on mechanisms is important in the optimized management of AK. These mechanisms will be critical in guiding whether selected populations, including those with immunosuppression, heritable cancer syndromes, and other risk factors for skin cancer, can benefit from these new concepts with vitamin D analogs and whether the approaches will be as effective in these populations as in immunocompetent patients.

3.
J Clin Invest ; 131(10)2021 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-33830943

RESUMEN

A complete carcinogen, ultraviolet B (UVB) radiation (290-320 nm), is the major cause of skin cancer. UVB-induced systemic immunosuppression that contributes to photocarcinogenesis is due to the glycerophosphocholine-derived lipid mediator platelet-activating factor (PAF). A major question in photobiology is how UVB radiation, which only absorbs appreciably in the epidermal layers of skin, can generate systemic effects. UVB exposure and PAF receptor (PAFR) activation in keratinocytes induce the release of large numbers of microvesicle particles (MVPs; extracellular vesicles ranging from 100 to 1000 nm in size). MVPs released from skin keratinocytes in vitro in response to UVB (UVB-MVPs) are dependent on the keratinocyte PAFR. Here, we used both pharmacologic and genetic approaches in cells and mice to show that both the PAFR and enzyme acid sphingomyelinase (aSMase) were necessary for UVB-MVP generation. Our discovery that the calcium-sensing receptor is a keratinocyte-selective MVP marker allowed us to determine that UVB-MVPs leaving the keratinocyte can be found systemically in mice and humans following UVB exposure. Moreover, we found that UVB-MVPs contained bioactive contents including PAFR agonists that allowed them to serve as effectors for UVB downstream effects, in particular UVB-mediated systemic immunosuppression.


Asunto(s)
Micropartículas Derivadas de Células/inmunología , Tolerancia Inmunológica/efectos de la radiación , Queratinocitos/inmunología , Rayos Ultravioleta , Animales , Línea Celular , Micropartículas Derivadas de Células/genética , Femenino , Humanos , Ratones , Ratones Noqueados , Factor de Activación Plaquetaria/genética , Factor de Activación Plaquetaria/inmunología , Glicoproteínas de Membrana Plaquetaria/genética , Glicoproteínas de Membrana Plaquetaria/inmunología , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/inmunología , Esfingomielina Fosfodiesterasa/genética , Esfingomielina Fosfodiesterasa/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...