Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Theor Popul Biol ; 157: 33-46, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38521098

RESUMEN

In natural ecosystems, species can be characterized by the nonlinear density-dependent self-regulation of their growth profile. Species of many taxa show a substantial density-dependent reduction for low population size. Nevertheless, many show the opposite trend; density regulation is minimal for small populations and increases significantly when the population size is near the carrying capacity. The theta-logistic growth equation can portray the intraspecific density regulation in the growth profile, theta being the density regulation parameter. In this study, we examine the role of these different growth profiles on the stability of a competitive ecological community with the help of a mathematical model of competitive species interactions. This manuscript deals with the random matrix theory to understand the stability of the classical theta-logistic models of competitive interactions. Our results suggest that having more species with strong density dependence, which self-regulate at low densities, leads to more stable communities. With this, stability also depends on the complexity of the ecological network. Species network connectance (link density) shows a consistent trend of increasing stability, whereas community size (species richness) shows a context-dependent effect. We also interpret our results from the aspect of two different life history strategies: r and K-selection. Our results show that the stability of a competitive network increases with the fraction of r-selected species in the community. Our result is robust, irrespective of different network architectures.


Asunto(s)
Ecosistema , Densidad de Población , Dinámica Poblacional , Conducta Competitiva , Animales
2.
Plant Physiol Biochem ; 187: 25-36, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-35944400

RESUMEN

With the advent of nanoscience, nanotechnology and their applications in various fields, mesoporous silica nanoparticles have gained popularity due to their stability, biocompatibility, unique honeycomb-like structures - ordered and random by nature, large surface to volume ratio, porosity, active surfaces, high loading capacity, ease of interactions with solvent, solute and suspended particles. These multitudes of intrinsic properties have motivated us towards an interdisciplinary detailed study on applications of mesoporous silica with an intention in increasing efficacy of productivity, growth if any, in plant life. This study aims at finding modus operandi of the structural uniqueness and eccentricity of various types of mesoporous silica in maneuvering their own functionality as a potential regulator for growth of seedlings of model plant Vigna radiata. We undertook characterization of surface, morphology, epitome of porosity for MCM 41 and MCM 48 using various experimental techniques followed by application of the same to growing seedlings at various dosages. It turned out that mesoporous silica nanoparticles, inarguably have higher efficacy in promoting plant growth, reducing stress, and enhancing basic metabolic rates at optimum dosage. Optimal operation point was determined at effective dosages for MCM 41 and MCM 48 those are being much lower than that of conventional silica nanoparticles. This optimum dosage is attributed to the structures of the nanoparticles used and implied further that higher pore volume, higher surface to volume ratio in case of MCM 41 at higher dosage lead to better adsorption of ions and functionality in contrast to that of MCM 48.

3.
J Theor Biol ; 503: 110375, 2020 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-32593680

RESUMEN

Overexploitation of commercially beneficial fish is a serious ecological problem around the world. The growth profiles of most of the species are likely to follow density regulated theta-logistic model irrespective of any taxonomy group [Sibly et al., Science, 2005]. Rapid depletion of population size may cause reduced fitness, and the species is exposed to Allee phenomena. Here sustainability is addressed by modelling the herring population as a stochastic process and computing the probability of extinction and expected time to extinction. The models incorporate an Allee effect, crowding effect which reduce birth and death rates at large populations, and two possible choices of harvesting models viz. linear harvesting and nonlinear harvesting. A seminal attempt is made by Saha [Saha et al., Ecol. Model, 2013] for this economically beneficial fish, but ignored the vital phenomena of harvesting. Moreover, in this model, the demographic stochasticity is introduced through the white-noise term, which has certain limitations when harvesting is introduced into the system. White noise is appropriate for such a system where immigration and emigration are allowed, but a harvesting model is rational for a closed system. The demographic stochasticity is introduced by replacing an ordinary differential equation model with a stochastic differential equation model, where the instantaneous variance in the SDE is derived directly from the birth and death rates of a birth-death process. The modelling parameters are fit to data of the herring populations collected from Global Population Dynamics Database (GPDD), and the risk of extinction of each population is computed under different harvesting protocols. A threshold for handling times is computed beneath which the risk of extinction is high. This is proposed as a recommendation to management for sustainable harvesting.


Asunto(s)
Peces , Modelos Biológicos , Animales , Extinción Biológica , Densidad de Población , Dinámica Poblacional , Procesos Estocásticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...