Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 37(2): 109800, 2021 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-34644574

RESUMEN

Hypothalamic pro-opiomelanocortin (POMC) neurons are known to trigger satiety. However, these neuronal cells encompass heterogeneous subpopulations that release γ-aminobutyric acid (GABA), glutamate, or both neurotransmitters, whose functions are poorly defined. Using conditional mutagenesis and chemogenetics, we show that blockade of the energy sensor mechanistic target of rapamycin complex 1 (mTORC1) in POMC neurons causes hyperphagia by mimicking a cellular negative energy state. This is associated with decreased POMC-derived anorexigenic α-melanocyte-stimulating hormone and recruitment of POMC/GABAergic neurotransmission, which is restrained by cannabinoid type 1 receptor signaling. Electrophysiology and optogenetic studies further reveal that pharmacological blockade of mTORC1 simultaneously activates POMC/GABAergic neurons and inhibits POMC/glutamatergic ones, implying that the functional specificity of these subpopulations relies on mTORC1 activity. Finally, POMC neurons with different neurotransmitter profiles possess specific molecular signatures and spatial distribution. Altogether, these findings suggest that mTORC1 orchestrates the activity of distinct POMC neurons subpopulations to regulate feeding behavior.


Asunto(s)
Regulación del Apetito , Conducta Alimentaria , Neuronas GABAérgicas/metabolismo , Ácido Glutámico/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Inhibición Neural , Núcleo Hipotalámico Paraventricular/metabolismo , Proopiomelanocortina/metabolismo , Animales , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo , Proopiomelanocortina/genética , Transducción de Señal
2.
Mol Metab ; 28: 151-159, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31420305

RESUMEN

OBJECTIVE: The hypothalamic paraventricular nucleus (PVN) is a key target of the melanocortin system, which orchestrates behavioral and metabolic responses depending on energy availability. The mechanistic target of rapamycin complex 1 (mTORC1) and the endocannabinoid type 1 receptor (CB1R) pathways are two key signaling systems involved in the regulation of energy balance whose activity closely depends upon energy availability. Here we tested the hypothesis that modulation of mTORC1 and CB1R signaling regulates excitatory glutamatergic inputs onto the PVN. METHODS: Patch-clamp recordings in C57BL/6J mice, in mice lacking the mTORC1 component Rptor or CB1R in pro-opio-melanocortin (POMC) neurons, combined with pharmacology targeting mTORC1, the melanocortin receptor type 4 (MC4R), or the endocannabinoid system under chow or a hypercaloric diet. RESULTS: Acute pharmacological inhibition of mTORC1 in C57BL/6J mice decreased glutamatergic inputs onto the PVN via a mechanism requiring modulation of MC4R, endocannabinoid 2-AG mobilization by PVN parvocellular neurons, and retrograde activation of presynaptic CB1R. Further electrophysiology studies using mice lacking mTORC1 activity or CB1R in POMC neurons indicated that the observed effects involved mTORC1 and CB1R-dependent regulation of glutamate release from POMC neurons. Finally, energy surfeit caused by hypercaloric high-fat diet feeding, rapidly and time-dependently altered the glutamatergic inputs onto parvocellular neurons and the ability of mTORC1 and CB1R signaling to modulate such excitatory activity. CONCLUSIONS: These findings pinpoint the relationship between mTORC1 and endocannabinoid-CB1R signaling in the regulation of the POMC-mediated glutamatergic inputs onto PVN parvocellular neurons and its rapid alteration in conditions favoring the development of obesity.


Asunto(s)
Ácido Glutámico/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Núcleo Hipotalámico Paraventricular/metabolismo , Receptor Cannabinoide CB1/metabolismo , Animales , Dieta Alta en Grasa , Ingestión de Energía/efectos de los fármacos , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/antagonistas & inhibidores , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptor Cannabinoide CB1/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Sirolimus/farmacología , Factores de Tiempo
3.
Mol Metab ; 12: 98-106, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29699927

RESUMEN

OBJECTIVE: Nutrient availability modulates reactive oxygen species (ROS) production in the hypothalamus. In turn, ROS regulate hypothalamic neuronal activity and feeding behavior. The mechanistic target of rapamycin complex 1 (mTORC1) pathway is an important cellular integrator of the action of nutrients and hormones. Here we tested the hypothesis that modulation of mTORC1 activity, particularly in Proopiomelanocortin (POMC)-expressing neurons, mediates the cellular and behavioral effects of ROS. METHODS: C57BL/6J mice or controls and their knockout (KO) littermates deficient either for the mTORC1 downstream target 70-kDa ribosomal protein S6 kinase 1 (S6K1) or for the mTORC1 component Rptor specifically in POMC neurons (POMC-rptor-KO) were treated with an intracerebroventricular (icv) injection of the ROS hydrogen peroxide (H2O2) or the ROS scavenger honokiol, alone or, respectively, in combination with the mTORC1 inhibitor rapamycin or the mTORC1 activator leptin. Oxidant-related signal in POMC neurons was assessed using dihydroethidium (DHE) fluorescence. RESULTS: Icv administration of H2O2 decreased food intake, while co-administration of rapamycin, whole-body deletion of S6K1, or deletion of rptor in POMC neurons impeded the anorectic action of H2O2. H2O2 also increased oxidant levels in POMC neurons, an effect that hinged on functional mTORC1 in these neurons. Finally, scavenging ROS prevented the hypophagic action of leptin, which in turn required mTORC1 to increase oxidant levels in POMC neurons and to inhibit food intake. CONCLUSIONS: Our results demonstrate that ROS and leptin require mTORC1 pathway activity in POMC neurons to increase oxidant levels in POMC neurons and consequently decrease food intake.


Asunto(s)
Ingestión de Alimentos , Leptina/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Neuronas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales , Hipotálamo/citología , Hipotálamo/metabolismo , Hipotálamo/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Estrés Oxidativo , Proopiomelanocortina/metabolismo
4.
Gut ; 67(12): 2192-2203, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29074727

RESUMEN

OBJECTIVE: The AAA+ ATPase Reptin is overexpressed in hepatocellular carcinoma and preclinical studies indicate that it could be a relevant therapeutic target. However, its physiological and pathophysiological roles in vivo remain unknown. This study aimed to determine the role of Reptin in mammalian adult liver. DESIGN AND RESULTS: We generated an inducible liver-specific Reptin knockout (RepinLKO ) mouse model. Following Reptin invalidation, mice displayed decreased body and fat mass, hypoglycaemia and hypolipidaemia. This was associated with decreased hepatic mTOR protein abundance. Further experiments in primary hepatocytes demonstrated that Reptin maintains mTOR protein level through its ATPase activity. Unexpectedly, loss or inhibition of Reptin induced an opposite effect on mTORC1 and mTORC2 signalling, with: (1) strong inhibition of hepatic mTORC1 activity, likely responsible for the reduction of hepatocytes cell size, for decreased de novo lipogenesis and cholesterol transcriptional programmes and (2) enhancement of mTORC2 activity associated with inhibition of the gluconeogenesis transcriptional programme and hepatic glucose production. Consequently, the role of hepatic Reptin in the pathogenesis of insulin resistance (IR) and non-alcoholic fatty liver disease consecutive to a high-fat diet was investigated. We found that Reptin deletion completely rescued pathological phenotypes associated with IR, including glucose intolerance, hyperglycaemia, hyperlipidaemia and hepatic steatosis. CONCLUSION: We show here that the AAA +ATPase Reptin is a regulator of mTOR signalling in the liver and global glucido-lipidic homeostasis. Inhibition of hepatic Reptin expression or activity represents a new therapeutic perspective for metabolic syndrome.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/fisiología , ADN Helicasas/fisiología , Glucosa/metabolismo , Metabolismo de los Lípidos/fisiología , Adenosina Trifosfatasas/fisiología , Animales , Peso Corporal/fisiología , ADN Helicasas/deficiencia , ADN Helicasas/genética , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Metabolismo Energético/fisiología , Hígado Graso/etiología , Hígado Graso/metabolismo , Hígado Graso/prevención & control , Intolerancia a la Glucosa/fisiopatología , Intolerancia a la Glucosa/prevención & control , Hepatocitos/metabolismo , Resistencia a la Insulina/fisiología , Lipogénesis/fisiología , Hígado/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Ratones Noqueados , Transducción de Señal/fisiología
5.
Trends Endocrinol Metab ; 26(10): 524-537, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26412154

RESUMEN

The endocannabinoid system (ECS) functions to adjust behavior and metabolism according to environmental changes in food availability. Its actions range from the regulation of sensory responses to the development of preference for the consumption of calorically-rich food and control of its metabolic handling. ECS activity is beneficial when access to food is scarce or unpredictable. However, when food is plentiful, the ECS favors obesity and metabolic disease. We review recent advances in understanding the roles of the ECS in energy balance, and discuss newly identified mechanisms of action that, after the withdrawal of first generation cannabinoid type 1 (CB1) receptor antagonists for the treatment of obesity, have made the ECS once again an attractive target for therapy.


Asunto(s)
Endocannabinoides/metabolismo , Enfermedades Metabólicas/metabolismo , Obesidad/metabolismo , Animales , Ingestión de Alimentos/fisiología , Humanos
6.
J Neurosci ; 35(7): 3022-33, 2015 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-25698740

RESUMEN

The cerebral innate immune system is able to modulate brain functioning and cognitive processes. During activation of the cerebral innate immune system, inflammatory factors produced by microglia, such as cytokines and adenosine triphosphate (ATP), have been directly linked to modulation of glutamatergic system on one hand and learning and memory functions on the other hand. However, the cellular mechanisms by which microglial activation modulates cognitive processes are still unclear. Here, we used taste memory tasks, highly dependent on glutamatergic transmission in the insular cortex, to investigate the behavioral and cellular impacts of an inflammation restricted to this cortical area in rats. We first show that intrainsular infusion of the endotoxin lipopolysaccharide induces a local inflammation and increases glutamatergic AMPA, but not NMDA, receptor expression at the synaptic level. This cortical inflammation also enhances associative, but not incidental, taste memory through increase of glutamatergic AMPA receptor trafficking. Moreover, we demonstrate that ATP, but not proinflammatory cytokines, is responsible for inflammation-induced enhancement of both associative taste memory and AMPA receptor expression in insular cortex. In conclusion, we propose that inflammation restricted to the insular cortex enhances associative taste memory through a purinergic-dependent increase of glutamatergic AMPA receptor expression at the synapse.


Asunto(s)
Aprendizaje por Asociación/fisiología , Encefalitis/fisiopatología , Memoria/fisiología , Microglía/metabolismo , Purinérgicos , Transmisión Sináptica/fisiología , Gusto/fisiología , Animales , Aprendizaje por Asociación/efectos de los fármacos , Corticosterona/sangre , Citocinas/metabolismo , Modelos Animales de Enfermedad , Encefalitis/sangre , Encefalitis/inducido químicamente , Ácido Glutámico/metabolismo , Lipopolisacáridos/farmacología , Cloruro de Litio/farmacología , Masculino , Memoria/efectos de los fármacos , Microglía/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Ratas , Ratas Wistar , Receptores AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Transmisión Sináptica/efectos de los fármacos , Gusto/efectos de los fármacos
7.
Mol Cell Endocrinol ; 397(1-2): 67-77, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25109278

RESUMEN

The mechanistic (or mammalian) target of rapamycin couples a variety of different environmental signals, including nutrients and hormones, with the regulation of several energy-demanding cellular functions, spanning from protein and lipid synthesis to mitochondrial activity and cytoskeleton dynamics. mTOR forms two distinct protein complexes in cells, mTORC1 and mTORC2. This review focuses on recent advances made in understanding the roles played by these two complexes in the regulation of whole body metabolic homeostasis. Studies carried out in the past few years have shown that mTORC1 activity in the hypothalamus varies by cell and stimulus type, and that this complex is critically implicated in the regulation of food intake and body weight and in the central actions of both nutrients and hormones, such as leptin, ghrelin and triiodothyronine. As a regulator of cellular anabolic processes, mTORC1 activity in the periphery favors adipogenesis, lipogenesis, glucose uptake and beta-cell mass expansion. Much less is known about the function of mTORC2 in the hypothalamus, while in peripheral organs this second complex exerts roles strikingly similar to those described for mTORC1. Deregulation of mTORC1 and mTORC2 is associated with obesity, type 2 diabetes, cancer and neurodegenerative disorders. Insights on the exact relationship between mTORC1 and mTORC2 in the context of the regulation of metabolic homeostasis and on the specific molecular mechanisms engaged by these two complexes in such regulation may provide new avenues for therapy.


Asunto(s)
Metabolismo Energético , Complejos Multiproteicos/fisiología , Serina-Treonina Quinasas TOR/fisiología , Animales , Glucosa/metabolismo , Homeostasis , Humanos , Hipotálamo/metabolismo , Metabolismo de los Lípidos , Diana Mecanicista del Complejo 1 de la Rapamicina , Diana Mecanicista del Complejo 2 de la Rapamicina , Complejos Multiproteicos/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...