Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Oncol ; 10: 882, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32850302

RESUMEN

The low-density lipoprotein receptor (LDLR) family comprises 14 single-transmembrane receptors sharing structural homology and common repeats. These receptors specifically recognize and internalize various extracellular ligands either alone or complexed with membrane-spanning co-receptors that are then sorted for lysosomal degradation or cell-surface recovery. As multifunctional endocytic receptors, some LDLR members from the core family were first considered as potential tumor suppressors due to their clearance activity against extracellular matrix-degrading enzymes. LDLRs are also involved in pleiotropic functions including growth factor signaling, matricellular proteins, and cell matrix adhesion turnover and chemoattraction, thereby affecting both tumor cells and their surrounding microenvironment. Therefore, their roles could appear controversial and dependent on the malignancy state. In this review, recent advances highlighting the contribution of LDLR members to breast cancer progression are discussed with focus on (1) specific expression patterns of these receptors in primary cancers or distant metastasis and (2) emerging mechanisms and signaling pathways. In addition, potential diagnosis and therapeutic options are proposed.

2.
Oncogene ; 37(19): 2515-2531, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29449696

RESUMEN

Glioblastoma multiforme is a brain malignancy characterized by high heterogeneity, invasiveness, and resistance to current therapies, attributes related to the occurrence of glioma stem cells (GSCs). Transforming growth factor ß (TGFß) promotes self-renewal and bone morphogenetic protein (BMP) induces differentiation of GSCs. BMP7 induces the transcription factor Snail to promote astrocytic differentiation in GSCs and suppress tumor growth in vivo. We demonstrate that Snail represses stemness in GSCs. Snail interacts with SMAD signaling mediators, generates a positive feedback loop of BMP signaling and transcriptionally represses the TGFB1 gene, decreasing TGFß1 signaling activity. Exogenous TGFß1 counteracts Snail function in vitro, and in vivo promotes proliferation and re-expression of Nestin, confirming the importance of TGFB1 gene repression by Snail. In conclusion, novel insight highlights mechanisms whereby Snail differentially regulates the activity of the opposing BMP and TGFß pathways, thus promoting an astrocytic fate switch and repressing stemness in GSCs.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Perfilación de la Expresión Génica/métodos , Glioblastoma/metabolismo , Células Madre Neoplásicas/citología , Transducción de Señal , Animales , Proteínas Morfogenéticas Óseas/metabolismo , Neoplasias Encefálicas/genética , Diferenciación Celular , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Glioblastoma/genética , Humanos , Ratones , Trasplante de Neoplasias , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Factores de Transcripción de la Familia Snail/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
3.
J Biol Chem ; 285(26): 19727-37, 2010 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-20427289

RESUMEN

Whether signal transduction pathways regulate epigenetic states in response to environmental cues remains poorly understood. We demonstrate here that Smad3, signaling downstream of transforming growth factor beta, interacts with the zinc finger domain of CCCTC-binding factor (CTCF), a nuclear protein known to act as "the master weaver of the genome." This interaction occurs via the Mad homology 1 domain of Smad3. Although Smad2 and Smad4 fail to interact, an alternatively spliced form of Smad2 lacking exon 3 interacts with CTCF. CTCF does not perturb well established transforming growth factor beta gene responses. However, Smads and CTCF co-localize to the H19 imprinting control region (ICR), which emerges as an insulator in cis and regulator of transcription and replication in trans via direct CTCF binding to the ICR. Smad recruitment to the ICR requires intact CTCF binding to this locus. Smad2/3 binding to the ICR requires Smad4, which potentially provides stability to the complex. Because the CTCF-Smad complex is not essential for the chromatin insulator function of the H19 ICR, we propose that it can play a role in chromatin cross-talk organized by the H19 ICR.


Asunto(s)
Cromatina/metabolismo , Proteínas Represoras/metabolismo , Proteínas Smad/metabolismo , Factor de Crecimiento Transformador beta/farmacología , Animales , Animales Recién Nacidos , Factor de Unión a CCCTC , Línea Celular , Línea Celular Tumoral , Células Cultivadas , Cromatina/genética , Inmunoprecipitación de Cromatina , Femenino , Expresión Génica/efectos de los fármacos , Impresión Genómica/genética , Células Hep G2 , Humanos , Factor II del Crecimiento Similar a la Insulina/genética , Masculino , Ratones , Unión Proteica/efectos de los fármacos , ARN Largo no Codificante , ARN no Traducido/genética , Proteínas Represoras/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteínas Smad/genética , Proteína smad3/genética , Proteína smad3/metabolismo , Transfección
4.
Differentiation ; 74(2-3): 119-28, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16533310

RESUMEN

Little is known about the production and function of metallopeptidases in embryonic development. One such enzyme, aminopeptidase N (APN), is present in several epithelia, the brain and angiogenic vessels in adults. APN promotes vascular growth and endothelial cell proliferation in physiological and pathological models of angiogenesis. However, its possible role in embryonic angiogenesis or other developmental processes is unknown. Its expression profile in the early phase of embryonic development has not been reported. We report here the expression of this enzyme during the early development of the chick embryo, using complementary techniques for monitoring APN mRNA, protein, and enzymatic activity. We detected APN in the embryo as early as gastrulation. In addition to the known sites of APN production identified in both adults and rat fetuses toward the end of gestation, APN was found in unexpected sites, such as the primitive streak, the dorsal folds of the neural tube, the somites, and the primordia of several organs. APN was present mostly in the cardiovascular compartment during the first 13 days of incubation, and in the hematopoietic compartment (yolk sac and aorta-gonad-mesonephros region) early in development. This study provides clues as to the possible role of APN in embryonic development.


Asunto(s)
Antígenos CD13/metabolismo , Desarrollo Embrionario , Animales , Antígenos CD13/análisis , Antígenos CD13/genética , Embrión de Pollo , Gástrula/enzimología , Hibridación in Situ , Neovascularización Fisiológica , ARN Mensajero/análisis , ARN Mensajero/biosíntesis
5.
Nat Clin Pract Cardiovasc Med ; 3(2): 80-5, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16446776

RESUMEN

The role of the renin-angiotensin system was previously thought to be restricted to the cardiovascular system. It now appears that this system also has important functions in other tissues. Hematopoiesis can be affected by inhibitors of the renin system in patients and in various experimental models. The renin system, particularly angiotensin II, has a role in different stages of hematopoiesis, notably during the first wave in the chick embryo (primitive hematopoiesis) and in the human adult (definitive hematopoiesis). In addition, the renin-angiotensin system in mice is involved in reconstitutive hematopoiesis following experimental irradiation; inhibition of this system improved the hematopoietic recovery in this situation. The clinical relevance and therapeutic applications of these findings offer a new area of clinical research. In this article, we review the evidence for a role for the renin system in the control of hematopoiesis at its different stages.


Asunto(s)
Sistema Hematopoyético/fisiología , Sistema Renina-Angiotensina/fisiología , Bloqueadores del Receptor Tipo 1 de Angiotensina II/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Angiotensinas/fisiología , Animales , Embrión de Pollo , Eritropoyetina/biosíntesis , Hematopoyesis/fisiología , Humanos , Ratones , Oligopéptidos/metabolismo
6.
Blood ; 105(1): 103-10, 2005 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-15367438

RESUMEN

Inactivation of the gene encoding mouse angiotensin I-converting enzyme (ACE), which converts angiotensin I into angiotensin II, results in anemia in adult animals. This anemia is corrected by angiotensin II, demonstrating the involvement of angiotensin II in adult (definitive) erythropoiesis. We investigated the possible role of the renin-angiotensin system (RAS) in primitive erythropoiesis in the yolk sac of the chicken embryo. Enzymatically active ACE was detected in the yolk sac endoderm, concomitantly with the differentiation of blood islands in the adjacent yolk sac mesoderm. The simultaneous presence of all the other components of the RAS (renin, angiotensinogen, angiotensin II receptor) in the vicinity of the blood islands suggests that this system is involved in erythropoiesis. This role was confirmed by in vivo blockade of the RAS with fosinoprilate, a specific inhibitor of chicken ACE, which decreased hematocrit by 15%. A similar decrease in hematocrit was observed following treatment with the angiotensin II receptor antagonist Sar1-Ile8-Angiotensin II, suggesting that this effect was mediated by angiotensin II. Both treatments affected hematocrit by decreasing erythroblast proliferation. Thus, the RAS, and its effector peptide angiotensin II in particular, modulates primitive erythropoiesis.


Asunto(s)
Eritropoyesis/fisiología , Peptidil-Dipeptidasa A/metabolismo , Sistema Renina-Angiotensina/fisiología , Renina/metabolismo , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Animales , Diferenciación Celular , Proliferación Celular/efectos de los fármacos , Embrión de Pollo , Células Eritroides/citología , Células Eritroides/efectos de los fármacos , Células Eritroides/metabolismo , Expresión Génica , Hematócrito , Hibridación in Situ , Peptidil-Dipeptidasa A/genética , ARN Mensajero/genética , Receptor de Angiotensina Tipo 2/genética , Receptor de Angiotensina Tipo 2/metabolismo , Renina/genética , Sistema Renina-Angiotensina/efectos de los fármacos , Factores de Tiempo , Factor A de Crecimiento Endotelial Vascular/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Saco Vitelino/embriología , Saco Vitelino/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...