Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Dis Model Mech ; 16(3)2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36916392

RESUMEN

Understanding the molecular mechanisms that lead to birth defects is an important step towards improved primary prevention. Mouse embryos homozygous for the Kumba (Ku) mutant allele of Zic2 develop severe spina bifida with complete lack of dorsolateral hinge points (DLHPs) in the neuroepithelium. Bone morphogenetic protein (BMP) signalling is overactivated in Zic2Ku/Ku embryos, and the BMP inhibitor dorsomorphin partially rescues neural tube closure in cultured embryos. RhoA signalling is also overactivated, with accumulation of actomyosin in the Zic2Ku/Ku neuroepithelium, and the myosin inhibitor Blebbistatin partially normalises neural tube closure. However, dorsomorphin and Blebbistatin differ in their effects at tissue and cellular levels: DLHP formation is rescued by dorsomorphin but not Blebbistatin, whereas abnormal accumulation of actomyosin is rescued by Blebbistatin but not dorsomorphin. These findings suggest a dual mechanism of spina bifida origin in Zic2Ku/Ku embryos: faulty BMP-dependent formation of DLHPs and RhoA-dependent F-actin accumulation in the neuroepithelium. Hence, we identify a multi-pathway origin of spina bifida in a mammalian system that may provide a developmental basis for understanding the corresponding multifactorial human defects.


Asunto(s)
Defectos del Tubo Neural , Disrafia Espinal , Ratones , Animales , Humanos , Tubo Neural/metabolismo , Actomiosina/metabolismo , Defectos del Tubo Neural/genética , Neurulación , Mamíferos/metabolismo , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo
2.
Sci Rep ; 12(1): 9693, 2022 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-35690633

RESUMEN

Children with syndromic forms of craniosynostosis undergo a plethora of surgical interventions to resolve the clinical features caused by the premature fusion of cranial sutures. While surgical correction is reliable, the need for repeated rounds of invasive treatment puts a heavy burden on the child and their family. This study explores a non-surgical alternative using mechanical loading of the cranial joints to prevent or delay craniofacial phenotypes associated with Crouzon syndrome. We treated Crouzon syndrome mice before the onset of craniosynostosis by cyclical mechanical loading of cranial joints using a custom designed set-up. Cranial loading applied to the frontal bone partially restores normal skull morphology, significantly reducing the typical brachycephalic appearance. This is underpinned by the delayed closure of the coronal suture and of the intersphenoidal synchondrosis. This study provides a novel treatment alternative for syndromic craniosynostosis which has the potential to be an important step towards replacing, reducing or refining the surgical treatment of all craniosynostosis patients.


Asunto(s)
Disostosis Craneofacial , Craneosinostosis , Animales , Suturas Craneales/cirugía , Disostosis Craneofacial/cirugía , Craneosinostosis/genética , Craneosinostosis/cirugía , Hueso Frontal , Humanos , Ratones , Fenotipo , Cráneo/cirugía
3.
Dis Model Mech ; 15(1)2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34842271

RESUMEN

Planar cell polarity (PCP) signalling is vital for initiation of mouse neurulation, with diminished convergent extension (CE) cell movements leading to craniorachischisis, a severe neural tube defect (NTD). Some humans with NTDs also have PCP gene mutations but these are heterozygous, not homozygous as in mice. Other genetic or environmental factors may interact with partial loss of PCP function in human NTDs. We found that reduced sulfation of glycosaminoglycans interacts with heterozygosity for the Lp allele of Vangl2 (a core PCP gene), to cause craniorachischisis in cultured mouse embryos, with rescue by exogenous sulphate. We hypothesized that this glycosaminoglycan-PCP interaction may regulate CE, but, surprisingly, DiO labelling of the embryonic node demonstrates no abnormality of midline axial extension in sulfation-depleted Lp/+ embryos. Positive-control Lp/Lp embryos show severe CE defects. Abnormalities were detected in the size and shape of somites that flank the closing neural tube in sulfation-depleted Lp/+ embryos. We conclude that failure of closure initiation can arise by a mechanism other than faulty neuroepithelial CE, with possible involvement of matrix-mediated somite expansion, adjacent to the closing neural tube.


Asunto(s)
Polaridad Celular , Defectos del Tubo Neural , Animales , Interacción Gen-Ambiente , Ratones , Proteínas del Tejido Nervioso/genética , Tubo Neural , Defectos del Tubo Neural/genética
4.
Genesis ; 59(11): e23445, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34490995

RESUMEN

Mouse models provide opportunities to investigate genetic interactions that cause or modify the frequency of neural tube defects (NTDs). Mutation of the PAX3 transcription factor prevents neural tube closure, leading to cranial and spinal NTDs whose frequency is responsive to folate status. Canonical Wnt signalling is implicated both in regulation of Pax3 expression and as a target of PAX3. This study investigated potential interactions of Pax3 mutation and canonical Wnt signalling using conditional gain- and loss-of-function models of ß-catenin. We found an additive effect of ß-catenin gain of function and Pax3 loss of function on NTDs and neural crest defects. ß-catenin gain of function in the Pax3 expression domain led to significantly increased frequency of cranial but not spinal NTDs in embryos that are heterozygous for Pax3 mutation, while both cranial and spinal neural tube closure were exacerbated in Pax3 homozygotes. Similarly, deficits of migrating neural crest cells were exacerbated by ß-catenin gain of function, with almost complete ablation of spinal neural crest cells and derivatives in Pax3 homozygous mutants. Pax3 expression was not affected by ß-catenin gain of function, while we confirmed that loss of function led to reduced Pax3 transcription. In contrast to gain of function, ß-catenin knockout in the Pax3 expression domain lowered the frequency of cranial NTDs in Pax3 null embryos. However, loss of function of ß-catenin and Pax3 resulted in spinal NTDs, suggesting differential regulation of cranial and spinal neural tube closure. In summary, ß-catenin function modulates the frequency of PAX3-related NTDs in the mouse.


Asunto(s)
Cresta Neural/metabolismo , Defectos del Tubo Neural/genética , Factor de Transcripción PAX3/genética , Vía de Señalización Wnt , Animales , Heterocigoto , Ratones , Ratones Endogámicos C57BL , Mutación , Cresta Neural/anomalías , Cresta Neural/embriología , Factor de Transcripción PAX3/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
5.
J Inherit Metab Dis ; 43(6): 1186-1198, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32743799

RESUMEN

Glycine abundance is modulated in a tissue-specific manner by use in biosynthetic reactions, catabolism by the glycine cleavage system (GCS), and excretion via glycine conjugation. Dysregulation of glycine metabolism is associated with multiple disorders including epilepsy, developmental delay, and birth defects. Mutation of the GCS component glycine decarboxylase (GLDC) in non-ketotic hyperglycinemia (NKH) causes accumulation of glycine in body fluids, but there is a gap in our knowledge regarding the effects on glycine metabolism in tissues. Here, we analysed mice carrying mutations in Gldc that result in severe or mild elevations of plasma glycine and model NKH. Liver of Gldc-deficient mice accumulated glycine and numerous glycine derivatives, including multiple acylglycines, indicating increased flux through reactions mediated by enzymes including glycine-N-acyltransferase and arginine: glycine amidinotransferase. Levels of dysregulated metabolites increased with age and were normalised by liver-specific rescue of Gldc expression. Brain tissue exhibited increased abundance of glycine, as well as derivatives including guanidinoacetate, which may itself be epileptogenic. Elevation of brain tissue glycine occurred even in the presence of only mildly elevated plasma glycine in mice carrying a missense allele of Gldc. Treatment with benzoate enhanced hepatic glycine conjugation thereby lowering plasma and tissue glycine. Moreover, administration of a glycine conjugation pathway intermediate, cinnamate, similarly achieved normalisation of liver glycine derivatives and circulating glycine. Although exogenous benzoate and cinnamate impact glycine levels via activity of glycine-N-acyltransferase, that is not expressed in brain, they are sufficient to lower levels of glycine and derivatives in brain tissue of treated Gldc-deficient mice.


Asunto(s)
Encéfalo/metabolismo , Glicina-Deshidrogenasa (Descarboxilante)/genética , Glicina/metabolismo , Hiperglicinemia no Cetósica/enzimología , Alelos , Animales , Encéfalo/patología , Hiperglicinemia no Cetósica/patología , Ratones , Mutación Missense
6.
Dev Cell ; 52(3): 321-334.e6, 2020 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-32049039

RESUMEN

Epithelial fusion is a key process of morphogenesis by which tissue connectivity is established between adjacent epithelial sheets. A striking and poorly understood feature of this process is "zippering," whereby a fusion point moves directionally along an organ rudiment. Here, we uncover the molecular mechanism underlying zippering during mouse spinal neural tube closure. Fusion is initiated via local activation of integrin ß1 and focal anchorage of surface ectoderm cells to a shared point of fibronectin-rich basement membrane, where the neural folds first contact each other. Surface ectoderm cells undergo proximal junction shortening, establishing a transitory semi-rosette-like structure at the zippering point that promotes juxtaposition of cells across the midline enabling fusion propagation. Tissue-specific ablation of integrin ß1 abolishes the semi-rosette formation, preventing zippering and causing spina bifida. We propose integrin-mediated anchorage as an evolutionarily conserved mechanism of general relevance for zippering closure of epithelial gaps whose disturbance can produce clinically important birth defects.


Asunto(s)
Embrión de Mamíferos/fisiología , Células Epiteliales/fisiología , Adhesiones Focales , Integrina beta1/fisiología , Cresta Neural/embriología , Tubo Neural/embriología , Neurulación , Actomiosina/metabolismo , Animales , Fusión Celular , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Células Epiteliales/citología , Células Epiteliales/metabolismo , Femenino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Morfogénesis , Cresta Neural/metabolismo , Cresta Neural/fisiología , Tubo Neural/metabolismo , Tubo Neural/fisiología
7.
Birth Defects Res ; 112(2): 196-204, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31793758

RESUMEN

CreERT2-mediated gene recombination is widely applied in developmental biology research. Activation of CreERT2 is typically achieved by injection of tamoxifen in an oily vehicle into the peritoneal cavity of mid-gestation pregnant mice. This can be technically challenging and adversely impacts welfare. Here we characterize three refinements to this technique: Pipette feeding (not gavage) of tamoxifen, ex vivo CreERT2 activation in whole embryo culture and injection of cell-permeable TAT-Cre into Cre-negative cultured embryos. We demonstrate that pipette feeding of tamoxifen solution to the mother on various days of gestation reliably activates embryonic CreERT2, illustrated here using ß-Actin CreERT2 , Sox2 CreERT2 , T CreERT2 , and Nkx1.2 CreERT2 . Pipette feeding of tamoxifen induces dose-dependent recombination of Rosa26 mTmG reporters when administered at E8.5. Activation of two neuromesodermal progenitor-targeting Cre drivers, T CreERT2 , and Nkx1.2 CreERT2 , produces comparable neuroepithelial lineage tracing. Dose-dependent CreERT2 activation can also be achieved by brief exposure to 4OH-tamoxifen in whole embryo culture, allowing temporal control of gene deletion and eliminating the need to treat pregnant mice. Rosa26 mTmG reporter recombination can also be achieved regionally by injecting TAT-Cre into embryonic tissues at the start of culture. This allows greater spatial control over Cre activation than can typically be achieved with endogenous CreERT2, for example by injecting TAT-Cre on one side of the midline. We hope that our description and application of these techniques will stimulate refinement of experimental methods involving CreERT2 activation for gene deletion and lineage tracing studies. Improved temporal (ex vivo treatment) and spatial (TAT-Cre injection) control of recombination will also allow previously intractable questions to be addressed.


Asunto(s)
Regulación de la Expresión Génica/genética , Ingeniería Genética/métodos , Animales , Aberraciones Cromosómicas/efectos de los fármacos , Embrión de Mamíferos/metabolismo , Desarrollo Embrionario/efectos de los fármacos , Desarrollo Embrionario/genética , Femenino , Eliminación de Gen , Expresión Génica/genética , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Ratones , Ratones Transgénicos , Embarazo , Recombinación Genética/genética , Tamoxifeno/farmacología
8.
Birth Defects Res ; 112(2): 205-211, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31758757

RESUMEN

BACKGROUND: Neural tube defects (NTDs) result from failure of neural tube closure during embryogenesis. These severe birth defects of the central nervous system include anencephaly and spina bifida, and affect 0.5-2 per 1,000 pregnancies worldwide in humans. It has been demonstrated that acetylation plays a pivotal role during neural tube closure, as animal models for defective histone acetyltransferase proteins display NTDs. Acetylation represents an important component of the complex network of posttranslational regulatory interactions, suggesting a possible fundamental role during primary neurulation events. This study aimed to assess protein acetylation contribution to early patterning of the central nervous system both in human and murine specimens. METHODS: We used both human and mouse (Cited2 -/- ) samples to analyze the dynamic acetylation of proteins during embryo development through immunohistochemistry, western blot analysis and quantitative polymerase chain reaction. RESULTS: We report the dynamic profile of histone and protein acetylation status during neural tube closure. We also report a rescue effect in an animal model by chemical p53 inhibition. CONCLUSIONS: Our data suggest that the p53-acetylation equilibrium may play a role in primary neurulation in mammals.


Asunto(s)
Defectos del Tubo Neural/embriología , Neurulación/genética , Acetilación , Anencefalia/etiología , Anencefalia/fisiopatología , Animales , Modelos Animales de Enfermedad , Desarrollo Embrionario/genética , Desarrollo Embrionario/fisiología , Histona Acetiltransferasas/metabolismo , Humanos , Mamíferos , Ratones/embriología , Neurulación/fisiología , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Disrafia Espinal/etiología , Disrafia Espinal/fisiopatología , Transactivadores/genética , Transactivadores/metabolismo , Factores de Transcripción , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
9.
J Clin Invest ; 130(3): 1446-1452, 2020 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-31794432

RESUMEN

Ventriculomegaly and hydrocephalus are associated with loss of function of glycine decarboxylase (Gldc) in mice and in humans suffering from non-ketotic hyperglycinemia (NKH), a neurometabolic disorder characterized by accumulation of excess glycine. Here, we showed that ventriculomegaly in Gldc-deficient mice is preceded by stenosis of the Sylvian aqueduct and malformation or absence of the subcommissural organ and pineal gland. Gldc functions in the glycine cleavage system, a mitochondrial component of folate metabolism, whose malfunction results in accumulation of glycine and diminished supply of glycine-derived 1-carbon units to the folate cycle. We showed that inadequate 1-carbon supply, as opposed to excess glycine, is the cause of hydrocephalus associated with loss of function of the glycine cleavage system. Maternal supplementation with formate prevented both ventriculomegaly, as assessed at prenatal stages, and postnatal development of hydrocephalus in Gldc-deficient mice. Furthermore, ventriculomegaly was rescued by genetic ablation of 5,10-methylene tetrahydrofolate reductase (Mthfr), which results in retention of 1-carbon groups in the folate cycle at the expense of transfer to the methylation cycle. In conclusion, a defect in folate metabolism can lead to prenatal aqueduct stenosis and resultant hydrocephalus. These defects are preventable by maternal supplementation with formate, which acts as a 1-carbon donor.


Asunto(s)
Ácido Fólico/metabolismo , Formiatos/metabolismo , Glicina-Deshidrogenasa (Descarboxilante)/deficiencia , Hidrocefalia/metabolismo , Animales , Ácido Fólico/genética , Glicina-Deshidrogenasa (Descarboxilante)/metabolismo , Hidrocefalia/genética , Hidrocefalia/patología , Hidrocefalia/prevención & control , Metilación , Metilenotetrahidrofolato Reductasa (NADPH2)/genética , Metilenotetrahidrofolato Reductasa (NADPH2)/metabolismo , Ratones , Ratones Noqueados
10.
Dis Model Mech ; 12(11)2019 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-31636139

RESUMEN

Neural tube defects (NTDs), including spina bifida and anencephaly, are among the most common birth defects worldwide, but their underlying genetic and cellular causes are not well understood. Some NTDs are preventable by supplemental folic acid. However, despite widespread use of folic acid supplements and implementation of food fortification in many countries, the protective mechanism is unclear. Pax3 mutant (splotch; Sp2H ) mice provide a model in which NTDs are preventable by folic acid and exacerbated by maternal folate deficiency. Here, we found that cell proliferation was diminished in the dorsal neuroepithelium of mutant embryos, corresponding to the region of abolished Pax3 function. This was accompanied by premature neuronal differentiation in the prospective midbrain. Contrary to previous reports, we did not find evidence that increased apoptosis could underlie failed neural tube closure in Pax3 mutant embryos, nor that inhibition of apoptosis could prevent NTDs. These findings suggest that Pax3 functions to maintain the neuroepithelium in a proliferative, undifferentiated state, allowing neurulation to proceed. NTDs in Pax3 mutants were not associated with abnormal abundance of specific folates and were not prevented by formate, a one-carbon donor to folate metabolism. Supplemental folic acid restored proliferation in the cranial neuroepithelium. This effect was mediated by enhanced progression of the cell cycle from S to G2 phase, specifically in the Pax3 mutant dorsal neuroepithelium. We propose that the cell-cycle-promoting effect of folic acid compensates for the loss of Pax3 and thereby prevents cranial NTDs.


Asunto(s)
Ácido Fólico/administración & dosificación , Mutación , Defectos del Tubo Neural/etiología , Factor de Transcripción PAX3/genética , Animales , Apoptosis , Ciclo Celular/efectos de los fármacos , Suplementos Dietéticos , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos CBA , Defectos del Tubo Neural/prevención & control , Factor de Transcripción PAX3/fisiología
11.
Dis Model Mech ; 12(11)2019 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-31628096

RESUMEN

Encephalocele is a clinically important birth defect that can lead to severe disability in childhood and beyond. The embryonic and early fetal pathogenesis of encephalocele is poorly understood and, although usually classified as a 'neural tube defect', there is conflicting evidence on whether encephalocele results from defective neural tube closure or is a post-neurulation defect. It is also unclear whether encephalocele can result from the same causative factors as anencephaly and open spina bifida, or whether it is aetiologically distinct. This lack of information results largely from the scarce availability of animal models of encephalocele, particularly ones that resemble the commonest, nonsyndromic human defects. Here, we report a novel mouse model of occipito-parietal encephalocele, in which the small GTPase Rac1 is conditionally ablated in the (non-neural) surface ectoderm. Most mutant fetuses have open spina bifida, and some also exhibit exencephaly/anencephaly. However, a proportion of mutant fetuses exhibit brain herniation, affecting the occipito-parietal region and closely resembling encephalocele. The encephalocele phenotype does not result from defective neural tube closure, but rather from a later disruption of the surface ectoderm covering the already closed neural tube, allowing the brain to herniate. The neuroepithelium itself shows no downregulation of Rac1 and appears morphologically normal until late gestation. A large skull defect overlies the region of brain herniation. Our work provides a new genetic model of occipito-parietal encephalocele, particularly resembling nonsyndromic human cases. Although encephalocele has a different, later-arising pathogenesis than open neural tube defects, both can share the same genetic causation.


Asunto(s)
Modelos Animales de Enfermedad , Encefalocele/etiología , Defectos del Tubo Neural/etiología , Neurulación/fisiología , Animales , Proteínas de Unión al ADN/fisiología , Ectodermo/fisiología , Humanos , Ratones , Ratones Endogámicos C57BL , Neuropéptidos/fisiología , Factores de Transcripción/fisiología , Proteína de Unión al GTP rac1/fisiología
12.
Birth Defects Res ; 111(16): 1165-1177, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31237114

RESUMEN

BACKGROUND: Whole embryo culture is a valuable research method in mammalian developmental biology and birth defects research, enabling longitudinal studies of explanted organogenesis-stage rodent embryos. Rat serum is the primary culture medium, and can sustain growth and development over limited periods as in utero. However, the cost, labor, and time to produce culture serum are factors limiting the uptake of the methodology. The goal of replacing or at least reducing rat serum usage in culture would be in accordance with the principles of "replacement, reduction, and refinement" of animals in research (the 3Rs). METHODS: We performed cultures of mouse embryos for 24 hr from embryonic day 8.5 in serum-free media or in rat serum diluted with defined media, compared with 100% rat serum. Developmental parameters scored after culture included yolk sac circulation, dorsal axial length, somite number, protein content, and completion of cranial neural tube closure. RESULTS: A literature review revealed use of both serum-free and diluted rat serum-based media in whole embryo culture studies, but with almost no formal comparisons of culture success against 100% rat serum. Two serum-free media were tested, but neither could sustain development as in 100% rat serum. Dilution of rat serum 1:1 with Glasgow Minimum Essential Medium plus defined supplements supported growth and development as well as whole rat serum, whereas other diluent media yielded substandard outcomes. CONCLUSION: Rat serum usage cannot be avoided, to achieve high quality mouse embryo cultures, but rat usage can be reduced using medium containing diluted serum.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Medios de Cultivo/química , Suero/química , Animales , Medios de Cultivo/metabolismo , Embrión de Mamíferos/metabolismo , Desarrollo Embrionario/fisiología , Ratones , Organogénesis/fisiología , Ratas
13.
Hum Mol Genet ; 27(24): 4218-4230, 2018 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-30189017

RESUMEN

The genetic basis of human neural tube defects (NTDs), such as anencephaly and spina bifida (SB), is complex and heterogeneous. Grainyhead-like genes represent candidates for involvement in NTDs based on the presence of SB and exencephaly in mice carrying loss-of-function alleles of Grhl2 or Grhl3. We found that reinstatement of Grhl3 expression, by bacterial artificial chromosome (BAC)-mediated transgenesis, prevents SB in Grhl3-null embryos, as in the Grhl3 hypomorphic curly tail strain. Notably, however, further increase in expression of Grhl3 causes highly penetrant SB. Grhl3 overexpression recapitulates the spinal NTD phenotype of loss-of-function embryos, although the underlying mechanism differs. However, it does not phenocopy other defects of Grhl3-null embryos such as abnormal axial curvature, cranial NTDs (exencephaly) or skin barrier defects, the latter being rescued by the Grhl3-transgene. Grhl2 and Grhl3 can form homodimers and heterodimers, suggesting a possible model in which defects arising from overexpression of Grhl3 result from sequestration of Grhl2 in heterodimers, mimicking Grhl2 loss of function. This hypothesis predicts that increased abundance of Grhl2 would have an ameliorating effect in Grhl3 overexpressing embryo. Instead, we observed a striking additive genetic interaction between Grhl2 and Grhl3 gain-of-function alleles. Severe SB arose in embryos in which both genes were expressed at moderately elevated levels that individually do not cause NTDs. Furthermore, moderate Grhl3 overexpression also interacted with the Vangl2Lp allele to cause SB, demonstrating genetic interaction with the planar cell polarity signalling pathway that is implicated in mouse and human NTDs.


Asunto(s)
Proteínas de Unión al ADN/genética , Proteínas del Tejido Nervioso/genética , Defectos del Tubo Neural/genética , Disrafia Espinal/genética , Factores de Transcripción/genética , Alelos , Animales , Animales Modificados Genéticamente/genética , Modelos Animales de Enfermedad , Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica/genética , Humanos , Mutación con Pérdida de Función , Ratones , Defectos del Tubo Neural/patología , Multimerización de Proteína/genética , Disrafia Espinal/patología
14.
Development ; 145(9)2018 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-29636380

RESUMEN

The last stage of neural tube (NT) formation involves closure of the caudal neural plate (NP), an embryonic structure formed by neuromesodermal progenitors and newly differentiated cells that becomes incorporated into the NT. Here, we show in mouse that, as cell specification progresses, neuromesodermal progenitors and their progeny undergo significant changes in shape prior to their incorporation into the NT. The caudo-rostral progression towards differentiation is coupled to a gradual reliance on a unique combination of complex mechanisms that drive tissue folding, involving pulses of apical actomyosin contraction and planar polarised cell rearrangements, all of which are regulated by the Wnt-PCP pathway. Indeed, when this pathway is disrupted, either chemically or genetically, the polarisation and morphology of cells within the entire caudal NP is disturbed, producing delays in NT closure. The most severe disruptions of this pathway prevent caudal NT closure and result in spina bifida. In addition, a decrease in Vangl2 gene dosage also appears to promote more rapid progression towards a neural fate, but not the specification of more neural cells.


Asunto(s)
Diferenciación Celular , Placa Neural/embriología , Células-Madre Neurales/metabolismo , Tubo Neural/embriología , Vía de Señalización Wnt , Animales , Ratones , Ratones Mutantes , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Placa Neural/patología , Células-Madre Neurales/patología , Tubo Neural/patología , Disrafia Espinal/epidemiología , Disrafia Espinal/genética , Disrafia Espinal/patología
15.
Dis Model Mech ; 11(3)2018 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-29590636

RESUMEN

Human mutations in the planar cell polarity component VANGL2 are associated with the neural tube defect spina bifida. Homozygous Vangl2 mutation in mice prevents initiation of neural tube closure, precluding analysis of its subsequent roles in neurulation. Spinal neurulation involves rostral-to-caudal 'zippering' until completion of closure is imminent, when a caudal-to-rostral closure point, 'Closure 5', arises at the caudal-most extremity of the posterior neuropore (PNP). Here, we used Grhl3Cre to delete Vangl2 in the surface ectoderm (SE) throughout neurulation and in an increasing proportion of PNP neuroepithelial cells at late neurulation stages. This deletion impaired PNP closure after the ∼25-somite stage and resulted in caudal spina bifida in 67% of Grhl3Cre/+Vangl2Fl/Fl embryos. In the dorsal SE, Vangl2 deletion diminished rostrocaudal cell body orientation, but not directional polarisation of cell divisions. In the PNP, Vangl2 disruption diminished mediolateral polarisation of apical neuroepithelial F-actin profiles and resulted in eversion of the caudal PNP. This eversion prevented elevation of the caudal PNP neural folds, which in control embryos is associated with formation of Closure 5 around the 25-somite stage. Closure 5 formation in control embryos is associated with a reduction in mechanical stress withstood at the main zippering point, as inferred from the magnitude of neural fold separation following zippering point laser ablation. This stress accommodation did not happen in Vangl2-disrupted embryos. Thus, disruption of Vangl2-dependent planar-polarised processes in the PNP neuroepithelium and SE preclude zippering point biomechanical accommodation associated with Closure 5 formation at the completion of PNP closure.


Asunto(s)
Embrión de Mamíferos/patología , Eliminación de Gen , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neurulación , Disrafia Espinal/fisiopatología , Actinas/metabolismo , Animales , Fenómenos Biomecánicos , Cuerpo Celular/metabolismo , División Celular , Polaridad Celular , Proteínas de Unión al ADN/metabolismo , Ectodermo/embriología , Ectodermo/metabolismo , Epitelio/embriología , Epitelio/metabolismo , Ratones Endogámicos C57BL , Factores de Transcripción/metabolismo
16.
Dev Biol ; 435(2): 130-137, 2018 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-29397878

RESUMEN

Failure of neural tube closure leads to neural tube defects (NTDs), common congenital abnormalities in humans. Among the genes whose loss of function causes NTDs in mice, Grainyhead-like3 (Grhl3) is essential for spinal neural tube closure, with null mutants exhibiting fully penetrant spina bifida. During spinal neurulation Grhl3 is initially expressed in the surface (non-neural) ectoderm, subsequently in the neuroepithelial component of the neural folds and at the node-streak border, and finally in the hindgut endoderm. Here, we show that endoderm-specific knockout of Grhl3 causes late-arising spinal NTDs, preceded by increased ventral curvature of the caudal region which was shown previously to suppress closure of the spinal neural folds. This finding supports the hypothesis that diminished Grhl3 expression in the hindgut is the cause of spinal NTDs in the curly tail, carrying a hypomorphic Grhl3 allele. Complete loss of Grhl3 function produces a more severe phenotype in which closure fails earlier in neurulation, before the stage of onset of expression in the hindgut of wild-type embryos. This implicates additional tissues and NTD mechanisms in Grhl3 null embryos. Conditional knockout of Grhl3 in the neural plate and node-streak border has minimal effect on closure, suggesting that abnormal function of surface ectoderm, where Grhl3 transcripts are first detected, is primarily responsible for early failure of spinal neurulation in Grhl3 null embryos.


Asunto(s)
Proteínas de Unión al ADN/fisiología , Defectos del Tubo Neural/genética , Tubo Neural/fisiología , Neurulación/genética , Factores de Transcripción/fisiología , Animales , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Desarrollo Embrionario , Regulación del Desarrollo de la Expresión Génica , Genes Reporteros , Estratos Germinativos/metabolismo , Ratones , Ratones Noqueados , Ratones Transgénicos , Placa Neural/metabolismo , Defectos del Tubo Neural/embriología , Defectos del Tubo Neural/patología , Especificidad de Órganos , ARN Mensajero/biosíntesis , Disrafia Espinal/embriología , Disrafia Espinal/genética , Factores de Transcripción/deficiencia , Factores de Transcripción/genética
17.
Sci Rep ; 8(1): 3325, 2018 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-29463853

RESUMEN

Fractures are a common comorbidity in children with the neural tube defect (NTD) spina bifida. Mutations in the Wnt/planar cell polarity (PCP) pathway contribute to NTDs in humans and mice, but whether this pathway independently determines bone mass is poorly understood. Here, we first confirmed that core Wnt/PCP components are expressed in osteoblasts and osteoclasts in vitro. In vivo, we performed detailed µCT comparisons of bone structure in tibiae from young male mice heterozygous for NTD-associated mutations versus WT littermates. PCP signalling disruption caused by Vangl2 (Vangl2Lp/+) or Celsr1 (Celsr1Crsh/+) mutations significantly reduced trabecular bone mass and distal tibial cortical thickness. NTD-associated mutations in non-PCP transcription factors were also investigated. Pax3 mutation (Pax3Sp2H/+) had minimal effects on bone mass. Zic2 mutation (Zic2Ku/+) significantly altered the position of the tibia/fibula junction and diminished cortical bone in the proximal tibia. Beyond these genes, we bioinformatically documented the known extent of shared genetic networks between NTDs and bone properties. 46 genes involved in neural tube closure are annotated with bone-related ontologies. These findings document shared genetic networks between spina bifida risk and bone structure, including PCP components and Zic2. Genetic variants which predispose to spina bifida may therefore independently diminish bone mass.


Asunto(s)
Huesos/patología , Polaridad Celular , Mutación , Proteínas del Tejido Nervioso/fisiología , Receptores Acoplados a Proteínas G/fisiología , Disrafia Espinal/patología , Factores de Transcripción/fisiología , Animales , Huesos/metabolismo , Heterocigoto , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Defectos del Tubo Neural/genética , Factor de Transcripción PAX3/fisiología , Disrafia Espinal/genética , Disrafia Espinal/metabolismo
18.
Cell Rep ; 21(7): 1795-1808, 2017 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-29141214

RESUMEN

Abnormal folate one-carbon metabolism (FOCM) is implicated in neural tube defects (NTDs), severe malformations of the nervous system. MTHFR mediates unidirectional transfer of methyl groups from the folate cycle to the methionine cycle and, therefore, represents a key nexus in partitioning one-carbon units between FOCM functional outputs. Methionine cycle inhibitors prevent neural tube closure in mouse embryos. Similarly, the inability to use glycine as a one-carbon donor to the folate cycle causes NTDs in glycine decarboxylase (Gldc)-deficient embryos. However, analysis of Mthfr-null mouse embryos shows that neither S-adenosylmethionine abundance nor neural tube closure depend on one-carbon units derived from embryonic or maternal folate cycles. Mthfr deletion or methionine treatment prevents NTDs in Gldc-null embryos by retention of one-carbon units within the folate cycle. Overall, neural tube closure depends on the activity of both the methionine and folate cycles, but transfer of one-carbon units between the cycles is not necessary.


Asunto(s)
Ácido Fólico/metabolismo , Metionina/metabolismo , Defectos del Tubo Neural/metabolismo , Tubo Neural/metabolismo , Animales , Femenino , Glicina-Deshidrogenasa (Descarboxilante)/genética , Glicina-Deshidrogenasa (Descarboxilante)/metabolismo , Masculino , Metilenotetrahidrofolato Reductasa (NADPH2)/genética , Metilenotetrahidrofolato Reductasa (NADPH2)/metabolismo , Ratones , Tubo Neural/embriología , Defectos del Tubo Neural/genética
19.
Proc Natl Acad Sci U S A ; 114(26): E5177-E5186, 2017 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-28607062

RESUMEN

Neural tube (NT) formation in the spinal region of the mammalian embryo involves a wave of "zippering" that passes down the elongating spinal axis, uniting the neural fold tips in the dorsal midline. Failure of this closure process leads to open spina bifida, a common cause of severe neurologic disability in humans. Here, we combined a tissue-level strain-mapping workflow with laser ablation of live-imaged mouse embryos to investigate the biomechanics of mammalian spinal closure. Ablation of the zippering point at the embryonic dorsal midline causes far-reaching, rapid separation of the elevating neural folds. Strain analysis revealed tissue expansion around the zippering point after ablation, but predominant tissue constriction in the caudal and ventral neural plate zone. This zone is biomechanically coupled to the zippering point by a supracellular F-actin network, which includes an actin cable running along the neural fold tips. Pharmacologic inhibition of F-actin or laser ablation of the cable causes neural fold separation. At the most advanced somite stages, when completion of spinal closure is imminent, the cable forms a continuous ring around the neuropore, and simultaneously, a new caudal-to-rostral zippering point arises. Laser ablation of this new closure initiation point causes neural fold separation, demonstrating its biomechanical activity. Failure of spinal closure in pre-spina bifida Zic2Ku mutant embryos is associated with altered tissue biomechanics, as indicated by greater neuropore widening after ablation. Thus, this study identifies biomechanical coupling of the entire region of active spinal neurulation in the mouse embryo as a prerequisite for successful NT closure.


Asunto(s)
Embrión de Mamíferos/metabolismo , Modelos Biológicos , Tubo Neural/embriología , Actinas , Animales , Embrión de Mamíferos/citología , Humanos , Ratones , Ratones Mutantes , Tubo Neural/citología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
20.
Prenat Diagn ; 37(3): 273-281, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28056489

RESUMEN

OBJECTIVE: We used non-invasive high-frequency ultrasound (HFUS) imaging to investigate embryonic brain development in a mouse model for neural tube defects (NTDs) and non-ketotic hyperglycinemia (NKH). METHOD: Using HFUS, we imaged embryos carrying loss of function alleles of Gldc encoding glycine decarboxylase, a component of the glycine cleavage system in mitochondrial folate metabolism, which is known to be associated with cranial NTDs and NKH in humans. We serially examined the same litter during the second half of embryonic development and quantified cerebral structures. Genotype was confirmed using PCR. Histology was used to confirm ultrasound findings. RESULTS: High-frequency ultrasound allowed in utero detection of two major brain abnormalities in Gldc-deficient mouse embryos, cranial NTDs (exencephaly) and ventriculomegaly (corresponding with the previous finding of post-natal hydrocephalus). Serial ultrasound allowed individual embryos to be analysed at successive gestational time points. From embryonic day 16.5 to 18.5, the lateral ventricle volume reduced in wild-type and heterozygous embryos but increased in homozygous Gldc-deficient embryos. CONCLUSION: Exencephaly and ventriculomegaly were detectable by HFUS in homozygous Gldc-deficient mouse embryos indicating this to be an effective tool to study CNS development. Longitudinal analysis of the same embryo allowed the prenatal onset and progression of ventricle enlargement in Gldc-deficient mice to be determined. © 2017 The Authors. Prenatal Diagnosis published by John Wiley & Sons, Ltd.


Asunto(s)
Glicina-Deshidrogenasa (Descarboxilante)/genética , Hidrocefalia/diagnóstico , Defectos del Tubo Neural/diagnóstico , Ultrasonografía Prenatal , Animales , Sistema Nervioso Central/diagnóstico por imagen , Sistema Nervioso Central/embriología , Embrión de Mamíferos , Femenino , Hidrocefalia/embriología , Hidrocefalia/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Defectos del Tubo Neural/embriología , Defectos del Tubo Neural/genética , Embarazo , Cráneo/diagnóstico por imagen , Cráneo/embriología , Ultrasonografía Prenatal/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA