Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Cereb Blood Flow Metab ; : 271678X241254772, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38726895

RESUMEN

MicroRNAs (miRNA) are endogenously produced small, non-coded, single-stranded RNAs. Due to their involvement in various cellular processes and cross-communication with extracellular components, miRNAs are often coined the "grand managers" of the cell. miRNAs are frequently involved in upregulation as well as downregulation of specific gene expression and thus, are often found to play a vital role in the pathogenesis of multiple diseases. Central nervous system (CNS) diseases prove fatal due to the intricate nature of both their development and the methods used for treatment. A considerable amount of ongoing research aims to delineate the complex relationships between miRNAs and different diseases, including each of the neurological disorders discussed in the present review. Ongoing research suggests that specific miRNAs can play either a pathologic or restorative and/or protective role in various CNS diseases. Understanding how these miRNAs are involved in various regulatory processes of CNS such as neuroinflammation, neurovasculature, immune response, blood-brain barrier (BBB) integrity and angiogenesis is of empirical importance for developing effective therapies. Here in this review, we summarized the current state of knowledge of miRNAs and their roles in CNS diseases along with a focus on their association with neuroinflammation, innate immunity, neurovascular function and BBB.

2.
Int J Mol Sci ; 25(2)2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38256220

RESUMEN

We have recently demonstrated that exosomal communication between endothelial progenitor cells (EPCs) and brain endothelial cells is compromised in hypertensive conditions, which might contribute to the poor outcomes of stroke subjects with hypertension. The present study investigated whether exercise intervention can regulate EPC-exosome (EPC-EX) functions in hypertensive conditions. Bone marrow EPCs from sedentary and exercised hypertensive transgenic mice were used for generating EPC-EXs, denoted as R-EPC-EXs and R-EPC-EXET. The exosomal microRNA profile was analyzed, and EX functions were determined in a co-culture system with N2a cells challenged by angiotensin II (Ang II) plus hypoxia. EX-uptake efficiency, cellular survival ability, reactive oxygen species (ROS) production, mitochondrial membrane potential, and the expressions of cytochrome c and superoxide-generating enzyme (Nox4) were assessed. We found that (1) exercise intervention improves the uptake efficiency of EPC-EXs by N2a cells. (2) exercise intervention restores miR-27a levels in R-EPC-EXs. (3) R-EPC-EXET improved the survival ability and reduced ROS overproduction in N2a cells challenged with Ang II and hypoxia. (4) R-EPC-EXET improved the mitochondrial membrane potential and decreased cytochrome c and Nox4 levels in Ang II plus hypoxia-injured N2a cells. All these effects were significantly reduced by miR-27a inhibitor. Together, these data have demonstrated that exercise-intervened EPC-EXs improved the mitochondrial function of N2a cells in hypertensive conditions, which might be ascribed to their carried miR-27a.


Asunto(s)
Células Progenitoras Endoteliales , Exosomas , MicroARNs , Animales , Ratones , Humanos , Citocromos c , Especies Reactivas de Oxígeno , Mitocondrias , Angiotensina II/farmacología , Hipoxia , MicroARNs/genética
3.
Artículo en Inglés | MEDLINE | ID: mdl-37957914

RESUMEN

BACKGROUND: Stem cell-released exosomes (EXs) have shown beneficial effects on regenerative diseases. Our previous study has revealed that EXs of endothelial progenitor cells (EPC-EXs) can elicit favorable effects on endothelial function. EXs may vary greatly in size, composition, and cargo uptake rate depending on the origins and stimulus; notably, EXs are promising vehicles for delivering microRNAs (miRs). Since miR-210 is known to protect cerebral endothelial cell mitochondria by reducing oxidative stress, here we study the effects of miR-210-loaded EPC-EXs (miR210-EPC-EXs) on ischemic brain damage in acute ischemic stroke (IS). METHODS: The miR210-EPC-EXs were generated from EPCs transfected with miR-210 mimic. Middle cerebral artery occlusion (MCAO) surgery was performed to induce acute IS in C57BL/6 mice. EPC-EXs or miR210-EPC-EXs were administrated via tail vein injection 2 hrs after IS. To explore the potential mechanisms, inhibitors of the vascular endothelial growth factor receptor 2 (VEGFR2)/PI3 kinase (PI3K) or tyrosine receptor kinase B (TrkB)/PI3k pathways were used. The brain tissue was collected after treatments for infarct size, cell apoptosis, oxidative stress, and protein expression (VEGFR2, TrkB) analyses on day two. The neurological deficit score (NDS) was evaluated before collecting the samples. RESULTS: 1) As compared to EPC-EXs, miR210-EPC-EXs profoundly reduced the infarct volume and improved the NDS on day two post-IS. 2) Fewer apoptosis cells were detected in the peri-infarct brain of mice treated with miR210-EPC-EXs than in EPC-EXs-treated mice. Meanwhile, the oxidative stress was profoundly reduced by miR210-EPC-EXs. 3) The ratios of p-PI3k/PI3k, p- VEGFR2/VEGFR2, and p-TrkB/TrkB in the ipsilateral brain were raised by miR210-EPC-EXs treatment. These effects could be significantly blocked or partially inhibited by PI3k, VEGFR2, or TrkB pathway inhibitors. CONCLUSION: These findings suggest that miR210-EPC-EXs protect the brain from acute ischemia- induced cell apoptosis and oxidative stress partially through the VEGFR2/PI3k and TrkB/PI3k signal pathways.

4.
Front Hum Neurosci ; 17: 1276681, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37817943

RESUMEN

Background: The temporary neck bridging devices represented by Comaneci and Cascade are a type of promising endovascular device for the treatment of intracranial bifurcation or wide-necked aneurysms. This systematic review and meta-analysis aim to assess the efficacy and safety of Comaneci/Cascade devices for the treatment of intracranial aneurysms. Methods: We performed a systematic literature search on articles in PubMed, Embase, and Web of Science that evaluated the efficacy and safety of Comaneci/Cascade devices for endovascular treatment of intracranial aneurysms, based on the Preferred Reporting Items for Systematic Reviews and Meta Analytics (PRISMA) guideline. We extracted the characteristics and treatment related information of patients included in the study, recorded the rate of technical success, procedural related complications, and angiographic outcomes. The angiographic outcome was evaluated based on Raymond Roy classification, and adequate occlusion was defined as Raymond Ray I + II. Results: Nine studies comprising 253 patients with 255 aneurysms were included. Among them, eight studies were conducted in Europe, one study was conducted in the USA. All these studies were retrospective. 206 aneurysms (80.78%) were ruptured. The vast majority of patients with ruptured aneurysms did not receive antiplatelet therapy. The rate of technical success was 97.1% (95% CI, 94.9 to 99.3%, I2 = 0%). The rate of periprocedural clinical complications was 10.9% (95% CI, 5.4 to 22.1%, I2 = 54%). The rate of complete occlusion (RR1) and adequate occlusion (RR1 + RR2) on immediate angiography after the procedure were 77.7% (95% CI, 72.7 to 83.2%, I2 = 35%) and 98% (95% CI, 95.9 to 100%, I2 = 0%) respectively. The rate of complete occlusion (RR1) and adequate occlusion (RR1 + RR2) on the last follow-up angiography were 81.2% (95% CI, 69.2 to 95.2%, I2 = 81%) and 93.7% (95% CI, 85.6 to 100%, I2 = 69%) respectively, with follow-up range from 3 to 18 months. 22/187 (11.76%) cases of aneurysms progressed during the follow-up period. 39/187 (20.86%) cases of aneurysms received additional treatment during the follow-up period. No fatal complications occurred during the treatment. Conclusion: The Comaneci/Cascade device can be used as an auxiliary treatment for intracranial aneurysms, with a good occlusion effect, but the incidence of complications still needs to be monitored.

5.
Front Neurosci ; 17: 1241418, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37621715

RESUMEN

Extracellular vesicles (EVs) serve as cell-to-cell and inter-organ communicators by conveying proteins and nucleic acids with regulatory functions. Emerging evidence shows that gut microbial-released EVs play a pivotal role in the gut-brain axis, bidirectional communication, and crosstalk between the gut and the brain. Increasing pre-clinical and clinical evidence suggests that gut bacteria-released EVs are capable of eliciting distinct signaling to the brain with the ability to cross the blood-brain barrier, exerting regulatory function on brain cells such as neurons, astrocytes, and microglia, via their abundant and diversified protein and nucleic acid cargo. Conversely, EVs derived from certain species of bacteria, particularly from gut commensals with probiotic properties, have recently been shown to confer distinct therapeutic effects on various neurological disorders. Thus, gut bacterial EVs may be both a cause of and therapy for neuropathological complications. This review marshals the basic, clinical, and translational studies that significantly contributed to our up-to-date knowledge of the therapeutic potential of gut microbial-derived EVs in treating neurological disorders, including strokes, Alzheimer's and Parkinson's disease, and dementia. The review also discusses the newer insights in recent studies focused on developing superior therapeutic microbial EVs via genetic manipulation and/or dietary intervention.

6.
Exp Neurol ; 358: 114211, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36027941

RESUMEN

We have previously demonstrated that endothelial progenitor cells (EPCs) provide beneficial effects on ischemic stroke by reducing oxidative stress, which could be through EPCs-released exosomes (EPC-EXs). EXs are emerging as a bioagent for mediating cell-cell communications via their carried microRNAs (miR). miR-210 is shown to provide a neuroprotection effect against ischemic stroke. Here, we aimed to determine whether the combination of EPC-EXs and miR-210 would provide an enhanced protective effect on neurons. The hypoxia and reoxygenation (H/R) model were applied to neurons to mimic the ischemic injury of neurons. EPCs were transfected with miR-210 mimic to elevate the level of miR-210 in cells and EPC-EXs (miR210-EPC-EXs). For functional studies, EPC-EXs were co-incubated with H/R-injured neurons, then the cell viability and reactive oxygen species (ROS) production were determined. The results showed 1) H/R induced apoptosis and ROS overproduction in neurons; 2) miR-210 mimic increased the level of miR-210 in both EPCs and EPC-EXs; 3) EPCs cultured in serum-free medium released more exosomes in comparison with cells grown in complete growth media, suggesting serum starving induce the release of EXs; 4) After transfection, EPCs grown in complete media had almost 50 times higher miR-210 level than EPCs had in serum-free media, while the EPCs-EXs isolated from the complete media has lower miR-210 expression than from the serum-free media in a time-dependent manner, suggesting the transfer of miR-210 through EXs; 5) After co-incubation, EPC-EXs and miR210-EPC-EXs were uptaken by neurons, and the miR-210 level in neurons was elevated by miR210-EPC-EXs; 6) miR210-EPC-EXs were more effective in promoting cell viability and decreasing apoptosis and ROS production than EPC-EXs. The present study demonstrated that EPCs-carried miR-210 could be released and transferred to neurons in a time-dependent manner and that miR-210 loading can enhance the protective effects of EPC-EXs on H/R-induced neuron apoptosis, oxidative stress, and decreased viability.


Asunto(s)
Células Progenitoras Endoteliales , Exosomas , Accidente Cerebrovascular Isquémico , MicroARNs , Humanos , Medio de Cultivo Libre de Suero/metabolismo , Células Progenitoras Endoteliales/metabolismo , Exosomas/metabolismo , Hipoxia/metabolismo , MicroARNs/metabolismo , Neuronas/metabolismo , Especies Reactivas de Oxígeno/metabolismo
7.
Photochem Photobiol ; 98(5): 1122-1130, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-34931322

RESUMEN

Ultraviolet B (UVB) stimulates the generation of extracellular vesicles, which elicit systemic effects. Here, we studied whether UVB affects the release and microRNA (miR) content of keratinocyte exosomes (EXs) in diabetic conditions. In vitro, we examined the UVB effects on affecting EX release from keratinocyte HaCaT cells (HaCaT-EX) pretreated with high glucose. HaCaT-EX functions were evaluated on Schwann cells (SCs). In vivo, UVB-induced miR change in skin EXs of diabetic db/db mice was analyzed. The miRs of interest were validated in HaCaT-EXs. We found that: (1) UVB promoted HaCaT-EX generation in dose- and time-dependent manners; 100 and 1800 J m-2 of UVB had the most prominent effect and were selected as effective low- and high-fluence UVB in vitro. (2) A total of 13 miRs were differentially expressed >3-fold in skin EXs in UVB-treated db/db mice; miR-126 was the most up-regulated by low-fluence UVB. (3) Functional studies revealed that the SC viability was improved by low-fluence UVB HaCaT-EXs, while worsened by high-fluence UVB HaCaT-EXs. (4) MiR-126 inhibitor attenuated the effects induced by low-fluence UVB HaCaT-EXs. Our data have demonstrated that low- and high-fluence UVBs promote HaCaT-EX generation but differentially affect exosomal miR levels and functions under diabetic conditions.


Asunto(s)
Diabetes Mellitus , Exosomas , Queratinocitos , MicroARNs , Animales , Línea Celular , Supervivencia Celular , Glucosa/farmacología , Células HaCaT , Humanos , Queratinocitos/efectos de la radiación , Ratones , MicroARNs/genética , Rayos Ultravioleta
8.
Front Pharmacol ; 11: 602985, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33708117

RESUMEN

Activation of the renin angiotensin system plays a pivotal role in the regulation of blood pressure, which is mainly attributed to the formation of angiotensin-II (Ang II). The actions of Ang II are mediated through binding to the Ang-II type 1 receptor (AT1R) which leads to increased blood pressure, fluid retention, and aldosterone secretion. In addition, Ang II is also involved in cell injury, vascular remodeling, and inflammation. The actions of Ang II could be antagonized by its conversion to the vasodilator peptide Ang (1-7), partly generated by the action of angiotensin converting enzyme 2 (ACE2) and/or neprilysin (NEP). Previous studies demonstrated increased urinary ACE2 shedding in the db/db mouse model of diabetic kidney disease. The aim of the study was to investigate whether renal and urinary ACE2 and NEP are altered in the 2K1C Goldblatt hypertensive mice. Since AT1R is highly expressed in the kidney, we also researched the effect of global deletion of AT1R on renal and urinary ACE2, NEP, and kidney injury marker (KIM-1). Hypertension and albuminuria were induced in AT1R knock out (AT1RKO) and WT mice by unilateral constriction of the renal artery of one kidney. The 24 h mean arterial blood pressure (MAP) was measured using radio-telemetry. Two weeks after 2K1C surgery, MAP and albuminuria were significantly increased in WT mice compared to AT1RKO mice. Results demonstrated a correlation between MAP and albuminuria. Unlike db/db diabetic mice, ACE2 and NEP expression and activities were significantly decreased in the clipped kidney of WT and AT1RKO compared with the contralateral kidney and sham control (p < 0.05). There was no detectable urinary ACE2 and NEP expression and activity in 2K1C mice. KIM-1 was significantly increased in the clipped kidney of WT and AT1KO (p < 0.05). Deletion of AT1R has no effect on the increased urinary KIM-1 excretion detected in 2K1C mice. In conclusion, renal injury in 2K1C Goldblatt mouse model is associated with loss of renal ACE2 and NEP expression and activity. Urinary KIM-1 could serve as an early indicator of acute kidney injury. Deletion of AT1R attenuates albuminuria and hypertension without affecting renal ACE2, NEP, and KIM-1 expression.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA