RESUMEN
Effective capture of fugitive actinides and daughter radionuclides constitutes a major remediation challenge at legacy or nuclear accident sites globally. The ability of double-layered, anionic clay minerals known as hydrotalcites (HTC) to contemporaneously sequester a range of contaminants from solution offers a unique remedy. However, HTC do not provide a robust repository for actinide isolation over the long term. In this study, we formed HTC by in-situ precipitation in a barren lixiviant from a uranium mine and thermally transformed the resulting radionuclide-laden, nanoscale HTC. Atomic-scale forensic examination of the amorphized/recrystallised product reveals segregation of U to nanometre-wide mineral interfaces and the local formation of interface-hosted mineral grains. This U-phase is enriched in rare earth elements, a geochemical analogue of actinides such as Np and Pu, and represents a previously unreported radionuclide interfacial segregation. U-rich phases associated with the mineral interfaces record a U concentration factor of ~ 50,000 relative to the original solute demonstrating high extraction and concentration efficiencies. In addition, the co-existing host mineral suite of periclase, spinel-, and olivine-group minerals that equate to a lower mantle, high P-T mineral assemblage have geochemical and geotechnical properties suitable for disposal in a nuclear waste repository. Our results record the efficient sequestering of radionuclides from contaminated water and this novel, broad-spectrum, nanoscale HTC capture and concentration process constitutes a rapid solute decontamination pathway and solids containment option in perpetuity.
RESUMEN
High-resolution characterizations of intergranular attack in alloy 600 (Ni-17Cr-9Fe) exposed to 325°C simulated pressurized water reactor primary water have been conducted using a combination of scanning electron microscopy, NanoSIMS, analytical transmission electron microscopy, and atom probe tomography. The intergranular attack exhibited a two-stage microstructure that consisted of continuous corrosion/oxidation to a depth of ~200 nm from the surface followed by discrete Cr-rich sulfides to a further depth of ~500 nm. The continuous oxidation region contained primarily nanocrystalline MO-structure oxide particles and ended at Ni-rich, Cr-depleted grain boundaries with spaced CrS precipitates. Three-dimensional characterization of the sulfidized region using site-specific atom probe tomography revealed extraordinary grain boundary composition changes, including total depletion of Cr across a several nm wide dealloyed zone as a result of grain boundary migration.
RESUMEN
Several techniques are presented for extracting information from atom probe mass spectra by investigating correlations within multiple-ion detector events. Analyses of this kind can provide insights into the origins of noise, the shape of mass peaks, or unexpected anomalies within the spectrum. Data can often be recovered from within the spectrum noise by considering the time-of-flight differences between ions within a multiple event. Correlated ion detection, particularly when associated with shifts in ion energies, may be used to probe the phenomenon of molecular ion dissociation, including the questions of data loss due to ion pile-up or the generation of neutrals in the dissociation process.
RESUMEN
In-depth analysis of pulsed laser atom probe tomography (APT) data on the field evaporation of the III-V semiconductor material GaSb reveals strong variations in charge states, relative abundances of different cluster ions, multiplicity of detector events and spatial correlation of evaporation events, as a function of the effective electric field at the specimen surface. These variations are discussed in comparison with the behaviour of two different metallic specimen materials, an Al-6XXX series alloy and pure W, studied under closely related experimental conditions in the same atom probe instrument. It is proposed that the complex behaviour of GaSb originates from a combination of spatially correlated evaporation events and the subsequent field induced dissociation of cluster ions, the latter contributing to inaccuracies in the overall atom probe composition determination for this material.
RESUMEN
Controlled nanoscale self-assembly of magnetic entities in semiconductors opens novel perspectives for the tailoring of magnetic semiconductor films and nanostructures with room temperature functionality. We report that a strongly directional self-assembly in growth direction in Mn-alloyed Ge is due to a stacking of individual Ge(1-x)Mn(x) clusters. The clusters represent the relevant entities for the magnetization of the material. They are formed of a core-shell structure displaying a Mn concentration gradient. While the magnetic moments seem to be carried by the shells of the clusters, their core is magnetically inactive.
RESUMEN
A dual FIB/SEM provides solutions to many challenges in atom probe specimen preparation. When combined with an in situ lift-out capability, the versatility of this tool allows almost any region of interest, in almost any geometry, to be placed at the apex of a specimen tip. Several preparation techniques have been developed in response to specific application requirements; for example, in cases where materials are not suitable for electropolishing, or where site-specific analysis is required. Two general techniques, with wide-ranging potential applications, are described in detail here. The first is a 'cut-out' technique that provides a relatively quick means of micro-tip specimen preparation from bulk material samples. The second method is a 'lift-out' technique that can be used in an in situ or ex situ mode and does not require the preparation of pre-sharpened mounting points.