Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mar Environ Res ; 193: 106280, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38043168

RESUMEN

Reproduction is a fundamental process necessary for maintaining a population. However, reproductive processes are sensitive to thermal stress which can cause bleaching in reef organisms such as corals and giant clams. Here we examined the phototrophic and physiological performances, particularly the reproductive processes, in Tridacna crocea during bleaching and recovery periods. Giant clam individuals were induced to bleach at heated treatment (32-33 °C) for 16 days and allowed to recover at 28-29 °C for 35 days. The control giant clams were kept at 28-29 °C. Heated giant clams showed lower phototrophic performances (Fv/Fm and photosynthesis), but their respiration and survival were similar to control giant clams. The gonadosomatic index (GSI) was lower, and the proportion of regressive eggs (i.e., eggs that are no longer viable) was higher in heated than in control giant clams. However, heated giant clams were able to maintain their egg size. In addition, T. crocea showed recovery of phototrophic potential and color of mantle but not of their reproductive output after a month of recovery. Our results indicate that bleaching reduces the reproductive output in giant clams by disrupting their gametogenesis, such as through egg resorption, but giant clams showed potential reproductive strategy, through maintenance of their egg size, to ensure the quality of their offspring. Furthermore, one month of recovery is not sufficient to restore the normal reproductive processes in T. crocea, which may delay their population recovery after a bleaching disturbance.


Asunto(s)
Antozoos , Bivalvos , Cardiidae , Humanos , Animales , Fotosíntesis , Reproducción
2.
Curr Biol ; 31(2): 413-419.e3, 2021 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-33157030

RESUMEN

Artificial light at night (ALAN) can have negative impacts on the health of humans and ecosystems.1-4 Marine organisms, including coral reefs in particular, rely on the natural light cycles of sunlight and moonlight to regulate various physiological, biological, and behavioral processes.5-8 Here, we demonstrate that light pollution caused delayed gametogenesis and unsynchronized gamete release in two coral species, Acropora millepora and Acropora digitifera, from the Indo-Pacific Ocean. Given the urbanization along major coasts, light pollution could thus further threaten coral communities' populations, which are already under severe degradation. A worldwide-modeled light pollution impact assessment is provided, which can help incorporate an important variable in coral reef conservation planning.


Asunto(s)
Antozoos/fisiología , Gametogénesis/efectos de la radiación , Iluminación/efectos adversos , Fotoperiodo , Urbanización , Animales , Antozoos/efectos de la radiación , Conservación de los Recursos Naturales , Arrecifes de Coral , Océano Pacífico
3.
Microorganisms ; 8(10)2020 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-33053643

RESUMEN

Corals harbor a great diversity of symbiotic microorganisms that play pivotal roles in host nutrition, reproduction, and development. Changes in the ocean environment, such as increasing exposure to artificial light at night (ALAN), may alter these relationships and result in a decline in coral health. In this study, we examined the microbiome associated with gravid specimens of the reef-building coral Acropora digitifera. We also assessed the temporal effects of ALAN on the coral-associated microbial community using high-throughput sequencing of the 16S rRNA gene V4 hypervariable region. The A. digitifera microbial community was dominated by phyla Proteobacteria, Firmicutes, and Bacteroidetes. Exposure to ALAN had no large-scale effect on the coral microbiome, although taxa affiliated with Rhodobacteraceae, Caulobacteraceae, Burkholderiaceae, Lachnospiraceae, and Ruminococcaceae were significantly enriched in corals subjected to ALAN. We further noted an increase in the relative abundance of the family Endozoicomonadaceae (Endozoicomonas) as the spawning period approached, regardless of light treatment. These findings highlight the stability of the A. digitifera microbial community under short-term artificial light pollution and provide initial insights into the response of the collective holobiont to ALAN.

4.
Mar Pollut Bull ; 160: 111567, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32891963

RESUMEN

Here, we examined the coral bleaching responses during the 2016 thermal stress event and post-bleaching changes in coral communities in the heavily disturbed reefs of the Bolinao-Anda Reef Complex (BARC), northwestern Philippines. Less than 25% of colonies bleached, with 77% attributed to five genera (Dipsastrea, Porites, Fungia, Seriatopora, and Montipora). Coral bleaching prevalence was associated with site location, coral composition, and coral abundance, suggesting that small-scale variation (<20 km) in coral communities (taxa and density) influences spatial variation in coral bleaching prevalence. There was no noticeable change in coral composition and cover two years after the bleaching event as exposure to chronic disturbance likely selected for the dominance of stress tolerant coral taxa and communities. Results show that the 2016 thermal stress event caused coral bleaching but with low prevalence at the BARC, which suggests that disturbed reefs may provide spatial refuge to coral communities from thermal stress.


Asunto(s)
Antozoos , Animales , Arrecifes de Coral , Filipinas , Prevalencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...