RESUMEN
This study investigated the impact of protein enrichment on the physicochemical, cooking, textural, and color properties of frozen cooked noodles (FCN) stored for 0-3 weeks at -18 °C. Incorporating casein, egg white protein, and soy protein into the noodles significantly increased moisture content, with casein-enriched noodles showing the highest initial moisture levels. The addition of proteins also led to increased ash content, indicating improved nutritional quality. Protein enrichment resulted in reduced cooking loss and enhanced water retention during cooking and frozen storage. Casein-enriched noodles exhibited the highest water absorption capacity and the most substantial enhancement in textural properties, maintaining cohesiveness, gumminess, and elasticity better than egg white protein and soy protein during storage. The results indicated that egg white protein promotes intermolecular interactions, leading to enhanced color stability over time. These findings suggest that enriching with the protein could be a viable approach to elevate the overall quality of FCN.
Asunto(s)
Caseínas , Culinaria , Proteínas de Soja , Proteínas de Soja/química , Caseínas/química , Congelación , Agua/química , Proteínas del Huevo/química , Mejoramiento de la Calidad , Color , Almacenamiento de Alimentos/métodosRESUMEN
The number of end-of-life waste tyres has increased enormously worldwide, which is one of the non-biodegradable Municipal Solid Waste (MSW) piling up in an open space for a long time. Every year, various types of tyres are released in the environment from different vehicles, such as trucks, buses, cars, motorcycles, and bicycles, which negatively impact the environment. Nowadays, waste tyres are treated in several ways, whereas thermochemical conversion is one of them, including combustion, gasification, incineration, and pyrolysis. Many literatures revealed that pyrolysis is a more environmentally friendly process than others since it can convert waste tyres into crude oil, char, and syngas without emitting harmful gases. In this study, the pyrolysis of tyres and the chemical activation of tyres are reviewed in terms of their kinetic behaviour. According to the literature, the most influential factors of the pyrolysis process are reactors, temperature, heating rate, residence time, feedstock size and catalyst. As the main ingredient of the tyre is rubber, tyre pyrolysis starts from 300 °C and completely decomposed nearly 550 °C. It can be found from literature that Pyrolysed tyre can produce 30-65% oil, 25-45% char and 5-20 % gas. It is also explained how the properties of active carbon (AC) are affected by activating conditions, including activation temperature, agent, the ratio of reagent mixture and others. Generally, pyrolytic char has surface area between 20 and 80 m2/g, whereas tyre-derived activated carbon's (TDAC) surface area varied from 90 to 970 m2/g. For large surface area and porous structure, TDAC has large application in purification and energy storage sector. The individuality of this article is to depict the entire pathway of AC production from waste tyres. The findings of this literature review help to improve technologies for producing activated carbon from waste tyres pyrolysed char.
RESUMEN
Background: The pulp of hog plum (Spondias pinnata L. f. kurz) has been documented as a potential source of nutritional, physiological, and pharmacological purposes due to its phenolic content (TPC) and antioxidant activity. However, an optimal extraction condition for hog plum pulp remains elusive. Optimization of extraction process conditions using Ultrasound-assisted extraction (UAE) technique has recently attracted research interest. Objectives: The present study focused on optimizing the UAE extraction conditions of TPC and antioxidant activities (DPPH and FRAP) from hog plum pulp by using response surface methodology (RSM). Methods: The RSM with a three-factor-three-level Box-Behnken design (BBD) was used to optimize the extraction conditions. The BBD was used to investigate the effects of three independent variables, X1: ultrasonic temperature (40-60 °C), X2: ultrasonic time (30-60 min), and X3: ethanol concentration (40-80%) on TPC, DPPH and FRAP assays. Fifteen experimental trials have been carried out to optimize the UAE extraction conditions. A second-order polynomial model was used for predicting the responses. Statistically, the model was validated using an analysis of variance (ANOVA). Results: The ANOVA results revealed that UAE extraction temperature, time, and ethanol concentration had a significant (p < 0.01) influence on the TPC, DPPH, and FRAP, suggesting that all extraction parameters included in this investigation were crucial to the optimization process. For TPC, DPPH, and FRAP, the R2 values were 0.9976, 0.9943, and 0.9989, respectively, indicating that the models developed based on second-order polynomials were satisfactorily accurate for analyzing interactions between parameters (response and independent variables). RSM analysis showed that the optimal extraction parameters which maximized TPC, DPPH, and FRAP were 52.03 °C temperature, 30 min, time, and 79.99% ethanol. Under optimal conditions, experimental values for TPC, DPPH, and FRAP were 370 ± 26 mg GAE/100g DM, 57 ± 7%, and 7650 ± 460 mg AAE/100 g DM, respectively. The experimental values showed a good agreement with the predicted values with residual standard error values below 0.2% under optimum conditions. Pearson's correlation coefficients (r) demonstrate that the TPC showed a weak positive correlation with DPPH (r = 0.3508) and moderate correlation with FRAP (r = 0.3963). Conclusion: The experimental results agreed with the predicted values, confirming the model's appropriateness and RSM's efficacy in optimizing the UAE extraction conditions. This optimized UAE extraction method may be effective in the industrial extraction process; moreover, further research should be conducted to determine the efficacy of these extracts when applied to food.