Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
2.
Nat Rev Genet ; 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38448562

RESUMEN

Chronic respiratory diseases, such as chronic obstructive pulmonary disease (COPD), asthma and interstitial lung diseases are frequently occurring disorders with a polygenic basis that account for a large global burden of morbidity and mortality. Recent large-scale genetic epidemiology studies have identified associations between genetic variation and individual respiratory diseases and linked specific genetic variants to quantitative traits related to lung function. These associations have improved our understanding of the genetic basis and mechanisms underlying common lung diseases. Moreover, examining the overlap between genetic associations of different respiratory conditions, along with evidence for gene-environment interactions, has yielded additional biological insights into affected molecular pathways. This genetic information could inform the assessment of respiratory disease risk and contribute to stratified treatment approaches.

4.
ERJ Open Res ; 10(1)2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38375425

RESUMEN

Introduction: Idiopathic pulmonary fibrosis (IPF) is a chronic interstitial pneumonia marked by progressive lung fibrosis and a poor prognosis. Recent studies have highlighted the potential role of infection in the pathogenesis of IPF, and a prior association of the HLA-DQB1 gene with idiopathic fibrotic interstitial pneumonia (including IPF) has been reported. Owing to the important role that the human leukocyte antigen (HLA) region plays in the immune response, here we evaluated if HLA genetic variation was associated specifically with IPF risk. Methods: We performed a meta-analysis of associations of the HLA region with IPF risk in individuals of European ancestry from seven independent case-control studies of IPF (comprising 5159 cases and 27 459 controls, including a prior study of fibrotic interstitial pneumonia). Single nucleotide polymorphisms, classical HLA alleles and amino acids were analysed and signals meeting a region-wide association threshold of p<4.5×10-4 and a posterior probability of replication >90% were considered significant. We sought to replicate the previously reported HLA-DQB1 association in the subset of studies independent of the original report. Results: The meta-analysis of all seven studies identified four significant independent single nucleotide polymorphisms associated with IPF risk. However, none met the posterior probability for replication criterion. The HLA-DQB1 association was not replicated in the independent IPF studies. Conclusion: Variation in the HLA region was not consistently associated with risk in studies of IPF. However, this does not preclude the possibility that other genomic regions linked to the immune response may be involved in the aetiology of IPF.

5.
medRxiv ; 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38293162

RESUMEN

Background: Idiopathic pulmonary fibrosis (IPF) is a chronic lung condition that is more prevalent in males than females. The reasons for this are not fully understood, with differing environmental exposures due to historically sex-biased occupations, or diagnostic bias, being possible explanations. To date, over 20 independent genetic variants have been identified to be associated with IPF susceptibility, but these have been discovered when combining males and females. Our aim was to test for the presence of sex-specific associations with IPF susceptibility and assess whether there is a need to consider sex-specific effects when evaluating genetic risk in clinical prediction models for IPF. Methods: We performed genome-wide single nucleotide polymorphism (SNP)-by-sex interaction studies of IPF risk in six independent IPF case-control studies and combined them using inverse-variance weighted fixed effect meta-analysis. In total, 4,561 cases (1,280 females and 2,281 males) and 23,500 controls (8,360 females and 14,528 males) of European genetic ancestry were analysed. We used polygenic risk scores (PRS) to assess differences in genetic risk prediction between males and females. Findings: Three independent genetic association signals were identified. All showed a consistent direction of effect across all individual IPF studies and an opposite direction of effect in IPF susceptibility between females and males. None had been previously identified in IPF susceptibility genome-wide association studies (GWAS). The predictive accuracy of the PRSs were similar between males and females, regardless of whether using combined or sex-specific GWAS results. Interpretation: We prioritised three genetic variants whose effect on IPF risk may be modified by sex, however these require further study. We found no evidence that the predictive accuracy of common SNP-based PRSs varies significantly between males and females.

6.
Clin Transl Allergy ; 13(10): e12293, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37876037

RESUMEN

BACKGROUND: Expression of the urokinase plasminogen activator receptor (uPAR) is elevated in the airway epithelium in asthma; however, the contribution of uPAR to asthma pathogenesis and scope for therapeutic targeting remains unknown. OBJECTIVES: To determine (i) the expression profile of uPAR in cultured human bronchial epithelial cells (HBEC) from asthma patients, (ii) the relationship between uPAR and the epithelial barrier, including blocking uPAR functions and (iii) the function of different uPAR isoforms. METHODS: uPAR levels in HBECs isolated from asthma patients and cells at air liquid interface (ALI) during differentiation were quantified. Transepithelial electrical resistance or electrical cell impedance sensing was used to relate uPAR levels to barrier properties, including effects of uPAR blocking antibodies. The functional effects of gain of function was determined using transcriptomics, in cells over-expressing membrane (muPAR), soluble cleaved (scuPAR) or soluble spliced (ssuPAR) isoforms. RESULTS: Elevated expression of uPAR was a feature of cultured HBECs from asthma patients, suggesting intrinsic alterations in asthma patient cells. Soluble uPAR levels inversely correlated with barrier properties of the HBEC layer in 2D and ALI. Blocking uPAR-integrin interactions enhanced barrier formation. The gain of function cells showed limited transcriptomic changes. CONCLUSION: This study provides a significant advance in our understanding of the relationship between asthma, uPAR and the epithelial barrier, where elevated circulating uPAR results in a reduced cell barrier, a phenotype prevalent in asthma.

7.
Environ Pollut ; 337: 122561, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37742862

RESUMEN

Household air pollution caused by inefficient cooking practices causes 4 million deaths a year worldwide. In Nepal, 86% of the rural population use solid fuels for cooking. Over 25% of premature deaths associated with air pollution are respiratory in nature. Here we aimed to identify molecular signatures of different cookstove and fuel type exposures in human airway epithelial cells, to understand the mechanisms mediating cook stove smoke induced lung disease. Primary human airway epithelial cells in submerged culture were exposed to traditional cook stove (TCS), improved cook stove (ICS) and liquefied petroleum gas (LPG) stove smoke extracts. Changes to gene expression, DNA methylation and hydroxymethylation were measured by bulk RNA sequencing and HumanMethylationEPIC BeadChip following oxidative bisulphite conversion, respectively. TCS smoke extract alone reproducibly caused changes in the expression of 52 genes enriched for oxidative stress pathways. TCS, ICS and LPG smoke extract exposures were associated with distinct changes to DNA methylation and hydroxymethylation. A subset of TCS induced genes were associated with differentially methylated and/or hydroxymethylated CpGs sites, and enriched for the ferroptosis pathway and the upstream regulator NFE2L2. DNA methylation and hydroxymethylation changes not associated with a concurrent change in gene expression, were linked to biological processes and molecular pathways important to airway health, including neutrophil function, transforming growth factor beta signalling, GTPase activity, and cell junction organisation. Our data identified differential impacts of TCS, ICS and LPG cook stove smoke on the human airway epithelium transcriptome, DNA methylome and hydroxymethylome and provide further insight into the association between indoor air pollution exposure and chronic lung disease mechanisms.


Asunto(s)
Contaminación del Aire Interior , Enfermedades Pulmonares , Petróleo , Humanos , Humo/efectos adversos , Nepal , Metilación de ADN , Contaminación del Aire Interior/efectos adversos , Contaminación del Aire Interior/análisis , Culinaria , Población Rural , Expresión Génica
8.
medRxiv ; 2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37546732

RESUMEN

Introduction: Idiopathic pulmonary fibrosis (IPF) is a chronic interstitial pneumonia marked by progressive lung fibrosis and a poor prognosis. Recent studies have highlighted the potential role of infection in the pathogenesis of IPF and a prior association of the HLA-DQB1 gene with idiopathic fibrotic interstitial pneumonia (including IPF) has been reported. Due to the important role that the Human Leukocyte Antigen (HLA) region plays in the immune response, here we evaluated if HLA genetic variation was associated specifically with IPF risk. Methods: We performed a meta-analysis of associations of the HLA region with IPF risk in individuals of European ancestry from seven independent case-control studies of IPF (comprising a total of 5,159 cases and 27,459 controls, including the prior study of fibrotic interstitial pneumonia). Single nucleotide polymorphisms, classical HLA alleles and amino acids were analysed and signals meeting a region-wide association threshold p<4.5×10-4 and a posterior probability of replication >90% were considered significant. We sought to replicate the previously reported HLA-DQB1 association in the subset of studies independent of the original report. Results: The meta-analysis of all seven studies identified four significant independent single nucleotide polymorphisms associated with IPF risk. However, none met the posterior probability for replication criterion. The HLA-DQB1 association was not replicated in the independent IPF studies. Conclusion: Variation in the HLA region was not consistently associated with risk in studies of IPF. However, this does not preclude the possibility that other genomic regions linked to the immune response may be involved in the aetiology of IPF.

9.
Eur Respir J ; 61(6)2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37263751

RESUMEN

BACKGROUND: Chronic sputum production impacts on quality of life and is a feature of many respiratory diseases. Identification of the genetic variants associated with chronic sputum production in a disease agnostic sample could improve understanding of its causes and identify new molecular targets for treatment. METHODS: We conducted a genome-wide association study (GWAS) of chronic sputum production in UK Biobank. Signals meeting genome-wide significance (p<5×10-8) were investigated in additional independent studies, were fine-mapped and putative causal genes identified by gene expression analysis. GWASs of respiratory traits were interrogated to identify whether the signals were driven by existing respiratory disease among the cases and variants were further investigated for wider pleiotropic effects using phenome-wide association studies (PheWASs). RESULTS: From a GWAS of 9714 cases and 48 471 controls, we identified six novel genome-wide significant signals for chronic sputum production including signals in the human leukocyte antigen (HLA) locus, chromosome 11 mucin locus (containing MUC2, MUC5AC and MUC5B) and FUT2 locus. The four common variant associations were supported by independent studies with a combined sample size of up to 2203 cases and 17 627 controls. The mucin locus signal had previously been reported for association with moderate-to-severe asthma. The HLA signal was fine-mapped to an amino acid change of threonine to arginine (frequency 36.8%) in HLA-DRB1 (HLA-DRB1*03:147). The signal near FUT2 was associated with expression of several genes including FUT2, for which the direction of effect was tissue dependent. Our PheWAS identified a wide range of associations including blood cell traits, liver biomarkers, infections, gastrointestinal and thyroid-associated diseases, and respiratory disease. CONCLUSIONS: Novel signals at the FUT2 and mucin loci suggest that mucin fucosylation may be a driver of chronic sputum production even in the absence of diagnosed respiratory disease and provide genetic support for this pathway as a target for therapeutic intervention.


Asunto(s)
Estudio de Asociación del Genoma Completo , Esputo , Humanos , Esputo/metabolismo , Cadenas HLA-DRB1 , Calidad de Vida , Proteínas , Mucinas , Moco/metabolismo , Predisposición Genética a la Enfermedad , Polimorfismo de Nucleótido Simple
10.
Thorax ; 78(5): 496-503, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-35537820

RESUMEN

RATIONALE: Eosinophils are associated with airway inflammation in respiratory disease. Eosinophil production and survival is controlled partly by interleukin-5: anti-interleukin-5 agents reduce asthma and response correlates with baseline eosinophil counts. However, whether raised eosinophils are causally related to chronic obstructive pulmonary disease (COPD) and other respiratory phenotypes is not well understood. OBJECTIVES: We investigated causality between eosinophils and: lung function, acute exacerbations of COPD, asthma-COPD overlap (ACO), moderate-to-severe asthma and respiratory infections. METHODS: We performed Mendelian randomisation (MR) using 151 variants from genome-wide association studies of blood eosinophils in UK Biobank/INTERVAL, and respiratory traits in UK Biobank/SpiroMeta, using methods relying on different assumptions for validity. We performed multivariable analyses using eight cell types where there was possible evidence of causation by eosinophils. MEASUREMENTS AND MAIN RESULTS: Causal estimates derived from individual variants were highly heterogeneous, which may arise from pleiotropy. The average effect of raising eosinophils was to increase risk of ACO (weighted median OR per SD eosinophils, 1.44 (95%CI 1.19 to 1.74)), and moderate-severe asthma (weighted median OR 1.50 (95%CI 1.23 to 1.83)), and to reduce forced expiratory volume in 1 s (FEV1)/forced vital capacity (FVC) and FEV1 (weighted median estimator, SD FEV1/FVC: -0.054 (95% CI -0.078 to -0.029), effect only prominent in individuals with asthma). CONCLUSIONS: Broad consistency across MR methods may suggest causation by eosinophils (although of uncertain magnitude), yet heterogeneity necessitates caution: other important mechanisms may be responsible for the impairment of respiratory health by these eosinophil-raising variants. These results could suggest that anti-IL5 agents (designed to lower eosinophils) may be valuable in treating other respiratory conditions, including people with overlapping features of asthma and COPD.


Asunto(s)
Asma , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Eosinófilos , Estudio de Asociación del Genoma Completo , Enfermedad Pulmonar Obstructiva Crónica/complicaciones , Asma/complicaciones , Volumen Espiratorio Forzado , Pulmón
11.
BMC Med Genomics ; 15(1): 119, 2022 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-35597955

RESUMEN

BACKGROUND: The role of copy number variants (CNVs) in susceptibility to asthma is not well understood. This is, in part, due to the difficulty of accurately measuring CNVs in large enough sample sizes to detect associations. The recent availability of whole-exome sequencing (WES) in large biobank studies provides an unprecedented opportunity to study the role of CNVs in asthma. METHODS: We called common CNVs in 49,953 individuals in the first release of UK Biobank WES using ClinCNV software. CNVs were tested for association with asthma in a stage 1 analysis comprising 7098 asthma cases and 36,578 controls from the first release of sequencing data. Nominally-associated CNVs were then meta-analysed in stage 2 with an additional 17,280 asthma cases and 115,562 controls from the second release of UK Biobank exome sequencing, followed by validation and fine-mapping. RESULTS: Five of 189 CNVs were associated with asthma in stage 2, including a deletion overlapping the HLA-DQA1 and HLA-DQB1 genes, a duplication of CHROMR/PRKRA, deletions within MUC22 and TAP2, and a duplication in FBRSL1. The HLA-DQA1, HLA-DQB1, MUC22 and TAP2 genes all reside within the human leukocyte antigen (HLA) region on chromosome 6. In silico analyses demonstrated that the deletion overlapping HLA-DQA1 and HLA-DQB1 is likely to be an artefact arising from under-mapping of reads from non-reference HLA haplotypes, and that the CHROMR/PRKRA and FBRSL1 duplications represent presence/absence of pseudogenes within the HLA region. Bayesian fine-mapping of the HLA region suggested that there are two independent asthma association signals. The variants with the largest posterior inclusion probability in the two credible sets were an amino acid change in HLA-DQB1 (glutamine to histidine at residue 253) and a multi-allelic amino acid change in HLA-DRB1 (presence/absence of serine, glycine or leucine at residue 11). CONCLUSIONS: At least two independent loci characterised by amino acid changes in the HLA-DQA1, HLA-DQB1 and HLA-DRB1 genes are likely to account for association of SNPs and CNVs in this region with asthma. The high divergence of haplotypes in the HLA can give rise to spurious CNVs, providing an important, cautionary tale for future large-scale analyses of sequencing data.


Asunto(s)
Asma , Variaciones en el Número de Copia de ADN , Alelos , Aminoácidos/genética , Asma/genética , Teorema de Bayes , Bancos de Muestras Biológicas , Exoma , Predisposición Genética a la Enfermedad , Antígenos HLA-DQ/genética , Cadenas HLA-DRB1/genética , Haplotipos , Antígenos de Histocompatibilidad Clase I , Humanos , Reino Unido , Secuenciación del Exoma
12.
Chest ; 161(5): 1155-1166, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35104449

RESUMEN

BACKGROUND: Some people have characteristics of both asthma and COPD (asthma-COPD overlap), and evidence suggests they experience worse outcomes than those with either condition alone. RESEARCH QUESTION: What is the genetic architecture of asthma-COPD overlap, and do the determinants of risk for asthma-COPD overlap differ from those for COPD or asthma? STUDY DESIGN AND METHODS: We conducted a genome-wide association study in 8,068 asthma-COPD overlap case subjects and 40,360 control subjects without asthma or COPD of European ancestry in UK Biobank (stage 1). We followed up promising signals (P < 5 × 10-6) that remained associated in analyses comparing (1) asthma-COPD overlap vs asthma-only control subjects, and (2) asthma-COPD overlap vs COPD-only control subjects. These variants were analyzed in 12 independent cohorts (stage 2). RESULTS: We selected 31 independent variants for further investigation in stage 2, and discovered eight novel signals (P < 5 × 10-8) for asthma-COPD overlap (meta-analysis of stage 1 and 2 studies). These signals suggest a spectrum of shared genetic influences, some predominantly influencing asthma (FAM105A, GLB1, PHB, TSLP), others predominantly influencing fixed airflow obstruction (IL17RD, C5orf56, HLA-DQB1). One intergenic signal on chromosome 5 had not been previously associated with asthma, COPD, or lung function. Subgroup analyses suggested that associations at these eight signals were not driven by smoking or age at asthma diagnosis, and in phenome-wide scans, eosinophil counts, atopy, and asthma traits were prominent. INTERPRETATION: We identified eight signals for asthma-COPD overlap, which may represent loci that predispose to type 2 inflammation, and serious long-term consequences of asthma.


Asunto(s)
Asma , Enfermedad Pulmonar Obstructiva Crónica , Asma/diagnóstico , Estudio de Asociación del Genoma Completo , Humanos , Pulmón , Enfermedad Pulmonar Obstructiva Crónica/complicaciones , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico , Enfermedad Pulmonar Obstructiva Crónica/genética , Fumar/genética
13.
ERJ Open Res ; 8(1)2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35198626

RESUMEN

Gene changes observed in asthma bronchial epithelial cells are maintained following repeated culture, presenting with an exaggerated response to viral infection and immune responses as well as having differences in the rate of cell division and replication https://bit.ly/3Cq2xKf.

14.
FASEB J ; 35(7): e21300, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34165809

RESUMEN

GPR126 is an adhesion G protein-coupled receptor which lies on chromosome 6q24. Genetic variants in this region are reproducibly associated with lung function and COPD in genome wide association studies (GWAS). The aims of this study were to define the role of GPR126 in the human lung and in pulmonary disease and identify possible casual variants. Online tools (GTEx and LDlink) identified SNPs which may have effects on GPR126 function/ expression, including missense variant Ser123Gly and an intronic variant that shows eQTL effects on GPR126 expression. GPR126 signaling via cAMP-mediated pathways was identified in human structural airway cells when activated with the tethered agonist, stachel. RNA-seq was used to identify downstream genes/ pathways affected by stachel-mediated GPR126 activation in human airway smooth muscle cells. We identified ~350 differentially expressed genes at 4 and 24 hours post stimulation with ~20% overlap. We identified that genes regulated by GPR126 activation include IL33, CTGF, and SERPINE1, which already have known roles in lung biology. Pathways altered by GPR126 included those involved in cell cycle progression and cell proliferation. Here, we suggest a role for GPR126 in airway remodeling.


Asunto(s)
Bronquios/fisiología , Células Epiteliales/fisiología , Músculo Liso/fisiología , Mutación Missense , Enfermedad Pulmonar Obstructiva Crónica/patología , Receptores Acoplados a Proteínas G/genética , Sistema Respiratorio/fisiopatología , Bronquios/citología , Proliferación Celular , Células Cultivadas , Células Epiteliales/citología , Genómica , Humanos , Músculo Liso/citología , Enfermedad Pulmonar Obstructiva Crónica/genética , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal
15.
ERJ Open Res ; 7(1)2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33532474

RESUMEN

Genetic studies have identified several epithelial-derived genes associated with airway diseases. However, techniques used to study gene function frequently exceed the proliferative potential of primary human bronchial epithelial cells (HBECs) isolated from patients. Increased expression of the polycomb group protein BMI-1 extends the lifespan of HBECs while maintaining cell context plasticity. Herein we aimed to assess how BMI-1 expression impacted cellular functions and global mRNA expression. HBECs from six donors were transduced with lentivirus containing BMI-1 and cells were characterised, including by RNA sequencing and impedance measurement. BMI-1-expressing HBECs (B-HBECs) have a proliferative advantage and show comparable in vitro properties to low passage primary HBECs, including cell attachment/spreading and barrier formation. The B-HBEC mRNA signature was modestly different to HBECs, with only 293 genes differentially expressed (5% false discovery rate). Genes linked to epithelial mesenchymal transition and cell cycle were enriched in B-HBECs. We investigated the expression of genes implicated in asthma from genetic and expression studies and found that 97.6% of genes remained unaltered. We have shown that increased BMI-1 expression in HBECs delays lung epithelial cell senescence by promoting cell cycle progression and highlighted the flexible utility for B-HBECs as an important platform for studying airway epithelial mechanisms.

16.
J Allergy Clin Immunol ; 147(1): 144-157, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32442646

RESUMEN

BACKGROUND: Asthma is a complex disease with multiple phenotypes that may differ in disease pathobiology and treatment response. IL33 single nucleotide polymorphisms (SNPs) have been reproducibly associated with asthma. IL33 levels are elevated in sputum and bronchial biopsies of patients with asthma. The functional consequences of IL33 asthma SNPs remain unknown. OBJECTIVE: This study sought to determine whether IL33 SNPs associate with asthma-related phenotypes and with IL33 expression in lung or bronchial epithelium. This study investigated the effect of increased IL33 expression on human bronchial epithelial cell (HBEC) function. METHODS: Association between IL33 SNPs (Chr9: 5,815,786-6,657,983) and asthma phenotypes (Lifelines/DAG [Dutch Asthma GWAS]/GASP [Genetics of Asthma Severity & Phenotypes] cohorts) and between SNPs and expression (lung tissue, bronchial brushes, HBECs) was done using regression modeling. Lentiviral overexpression was used to study IL33 effects on HBECs. RESULTS: We found that 161 SNPs spanning the IL33 region associated with 1 or more asthma phenotypes after correction for multiple testing. We report a main independent signal tagged by rs992969 associating with blood eosinophil levels, asthma, and eosinophilic asthma. A second, independent signal tagged by rs4008366 presented modest association with eosinophilic asthma. Neither signal associated with FEV1, FEV1/forced vital capacity, atopy, and age of asthma onset. The 2 IL33 signals are expression quantitative loci in bronchial brushes and cultured HBECs, but not in lung tissue. IL33 overexpression in vitro resulted in reduced viability and reactive oxygen species-capturing of HBECs, without influencing epithelial cell count, metabolic activity, or barrier function. CONCLUSIONS: We identify IL33 as an epithelial susceptibility gene for eosinophilia and asthma, provide mechanistic insight, and implicate targeting of the IL33 pathway specifically in eosinophilic asthma.


Asunto(s)
Asma , Regulación de la Expresión Génica/inmunología , Predisposición Genética a la Enfermedad , Interleucina-33 , Polimorfismo de Nucleótido Simple , Adulto , Asma/genética , Asma/inmunología , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Interleucina-33/genética , Interleucina-33/inmunología , Masculino , Persona de Mediana Edad
17.
Front Allergy ; 2: 738741, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35386986

RESUMEN

Asthma affects more than 300 million people globally and is both under diagnosed and under treated. The most recent and largest genome-wide association study investigating moderate to severe asthma to date was carried out in 2019 and identified 25 independent signals. However, as new and in-depth downstream databases become available, the translational analysis of these signals into target genes and pathways is timely. In this study, unique (U-BIOPRED) and publicly available datasets (HaploReg, Open Target Genetics and GTEx) were investigated for the 25 GWAS signals to identify 37 candidate causal genes. Additional traits associated with these signals were identified through PheWAS using the UK Biobank resource, with asthma and eosinophilic traits amongst the strongest associated. Gene expression omnibus dataset examination identified 13 candidate genes with altered expression profiles in the airways and blood of asthmatic subjects, including MUC5AC and STAT6. Gene expression analysis through publicly available datasets highlighted lung tissue cell specific expression, with both MUC5AC and SLC22A4 genes showing enriched expression in ciliated cells. Gene enrichment pathway and interaction analysis highlighted the dominance of the HLA-DQA1/A2/B1/B2 gene cluster across many immunological diseases including asthma, type I diabetes, and rheumatoid arthritis. Interaction and prediction analyses found IL33 and IL18R1 to be key co-localization partners for other genes, predicted that CD274 forms co-expression relationships with 13 other genes, including the HLA-DQA1/A2/B1/B2 gene cluster and that MUC5AC and IL37 are co-expressed. Drug interaction analysis revealed that 11 of the candidate genes have an interaction with available therapeutics. This study provides significant insight into these GWAS signals in the context of cell expression, function, and disease relationship with the view of informing future research and drug development efforts for moderate-severe asthma.

18.
Front Allergy ; 2: 677677, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35386996

RESUMEN

Extracellular ATP functions as a signaling messenger through its actions on purinergic receptors, and is known to be involved in numerous physiological and pathophysiological processes throughout the body, including in the lungs and airways. Consequently, purinergic receptors are considered to be promising therapeutic targets for many respiratory diseases, including asthma. This review explores how online bioinformatics resources combined with recently generated datasets can be utilized to investigate purinergic receptor gene expression in tissues and cell types of interest in respiratory disease to identify potential therapeutic targets, which can then be investigated further. These approaches show that different purinergic receptors are expressed at different levels in lung tissue, and that purinergic receptors tend to be expressed at higher levels in immune cells and at more moderate levels in airway structural cells. Notably, P2RX1, P2RX4, P2RX7, P2RY1, P2RY11, and P2RY14 were revealed as the most highly expressed purinergic receptors in lung tissue, therefore suggesting that these receptors have good potential as therapeutic targets for asthma and other respiratory diseases.

19.
Lancet ; 396(10260): 1413-1421, 2020 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-33002429

RESUMEN

BACKGROUND: The optimal timing of radiotherapy after radical prostatectomy for prostate cancer is uncertain. We aimed to compare the efficacy and safety of adjuvant radiotherapy versus an observation policy with salvage radiotherapy for prostate-specific antigen (PSA) biochemical progression. METHODS: We did a randomised controlled trial enrolling patients with at least one risk factor (pathological T-stage 3 or 4, Gleason score of 7-10, positive margins, or preoperative PSA ≥10 ng/mL) for biochemical progression after radical prostatectomy (RADICALS-RT). The study took place in trial-accredited centres in Canada, Denmark, Ireland, and the UK. Patients were randomly assigned in a 1:1 ratio to adjuvant radiotherapy or an observation policy with salvage radiotherapy for PSA biochemical progression (PSA ≥0·1 ng/mL or three consecutive rises). Masking was not deemed feasible. Stratification factors were Gleason score, margin status, planned radiotherapy schedule (52·5 Gy in 20 fractions or 66 Gy in 33 fractions), and centre. The primary outcome measure was freedom from distant metastases, designed with 80% power to detect an improvement from 90% with salvage radiotherapy (control) to 95% at 10 years with adjuvant radiotherapy. We report on biochemical progression-free survival, freedom from non-protocol hormone therapy, safety, and patient-reported outcomes. Standard survival analysis methods were used. A hazard ratio (HR) of less than 1 favoured adjuvant radiotherapy. This study is registered with ClinicalTrials.gov, NCT00541047. FINDINGS: Between Nov 22, 2007, and Dec 30, 2016, 1396 patients were randomly assigned, 699 (50%) to salvage radiotherapy and 697 (50%) to adjuvant radiotherapy. Allocated groups were balanced with a median age of 65 years (IQR 60-68). Median follow-up was 4·9 years (IQR 3·0-6·1). 649 (93%) of 697 participants in the adjuvant radiotherapy group reported radiotherapy within 6 months; 228 (33%) of 699 in the salvage radiotherapy group reported radiotherapy within 8 years after randomisation. With 169 events, 5-year biochemical progression-free survival was 85% for those in the adjuvant radiotherapy group and 88% for those in the salvage radiotherapy group (HR 1·10, 95% CI 0·81-1·49; p=0·56). Freedom from non-protocol hormone therapy at 5 years was 93% for those in the adjuvant radiotherapy group versus 92% for those in the salvage radiotherapy group (HR 0·88, 95% CI 0·58-1·33; p=0·53). Self-reported urinary incontinence was worse at 1 year for those in the adjuvant radiotherapy group (mean score 4·8 vs 4·0; p=0·0023). Grade 3-4 urethral stricture within 2 years was reported in 6% of individuals in the adjuvant radiotherapy group versus 4% in the salvage radiotherapy group (p=0·020). INTERPRETATION: These initial results do not support routine administration of adjuvant radiotherapy after radical prostatectomy. Adjuvant radiotherapy increases the risk of urinary morbidity. An observation policy with salvage radiotherapy for PSA biochemical progression should be the current standard after radical prostatectomy. FUNDING: Cancer Research UK, MRC Clinical Trials Unit, and Canadian Cancer Society.


Asunto(s)
Adenocarcinoma/radioterapia , Adenocarcinoma/cirugía , Prostatectomía , Neoplasias de la Próstata/radioterapia , Neoplasias de la Próstata/cirugía , Adenocarcinoma/patología , Anciano , Biomarcadores de Tumor/sangre , Supervivencia sin Enfermedad , Humanos , Masculino , Persona de Mediana Edad , Clasificación del Tumor , Modelos de Riesgos Proporcionales , Antígeno Prostático Específico/sangre , Neoplasias de la Próstata/patología , Radioterapia Adyuvante , Terapia Recuperativa , Análisis de Supervivencia , Factores de Tiempo
20.
Allergy ; 75(8): 1902-1917, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32460363

RESUMEN

Airway epithelial barrier dysfunction is frequently observed in asthma and may have important implications. The physical barrier function of the airway epithelium is tightly interwoven with its immunomodulatory actions, while abnormal epithelial repair responses may contribute to remodelling of the airway wall. We propose that abnormalities in the airway epithelial barrier play a crucial role in the sensitization to allergens and pathogenesis of asthma. Many of the identified susceptibility genes for asthma are expressed in the airway epithelium, supporting the notion that events at the airway epithelial surface are critical for the development of the disease. However, the exact mechanisms by which the expression of epithelial susceptibility genes translates into a functionally altered response to environmental risk factors of asthma are still unknown. Interactions between genetic factors and epigenetic regulatory mechanisms may be crucial for asthma susceptibility. Understanding these mechanisms may lead to identification of novel targets for asthma intervention by targeting the airway epithelium. Moreover, exciting new insights have come from recent studies using single-cell RNA sequencing (scRNA-Seq) to study the airway epithelium in asthma. This review focuses on the role of airway epithelial barrier function in the susceptibility to develop asthma and novel insights in the modulation of epithelial cell dysfunction in asthma.


Asunto(s)
Asma , Alérgenos , Asma/genética , Células Epiteliales , Epitelio , Humanos , Mucosa Respiratoria , Sistema Respiratorio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...