Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Struct Mol Biol ; 31(7): 1061-1071, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38575788

RESUMEN

Supercomplexes of the respiratory chain are established constituents of the oxidative phosphorylation system, but their role in mammalian metabolism has been hotly debated. Although recent studies have shown that different tissues/organs are equipped with specific sets of supercomplexes, depending on their metabolic needs, the notion that supercomplexes have a role in the regulation of metabolism has been challenged. However, irrespective of the mechanistic conclusions, the composition of various high molecular weight supercomplexes remains uncertain. Here, using cryogenic electron microscopy, we demonstrate that mammalian (mouse) tissues contain three defined types of 'respirasome', supercomplexes made of CI, CIII2 and CIV. The stoichiometry and position of CIV differs in the three respirasomes, of which only one contains the supercomplex-associated factor SCAF1, whose involvement in respirasome formation has long been contended. Our structures confirm that the 'canonical' respirasome (the C-respirasome, CICIII2CIV) does not contain SCAF1, which is instead associated to a different respirasome (the CS-respirasome), containing a second copy of CIV. We also identify an alternative respirasome (A-respirasome), with CIV bound to the 'back' of CI, instead of the 'toe'. This structural characterization of mouse mitochondrial supercomplexes allows us to hypothesize a mechanistic basis for their specific role in different metabolic conditions.


Asunto(s)
Microscopía por Crioelectrón , Animales , Ratones , Complejo IV de Transporte de Electrones/metabolismo , Complejo IV de Transporte de Electrones/química , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/química , Fosforilación Oxidativa
2.
Nat Commun ; 14(1): 4681, 2023 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-37542031

RESUMEN

Robust oxygenic photosynthesis requires a suite of accessory factors to ensure efficient assembly and repair of the oxygen-evolving photosystem two (PSII) complex. The highly conserved Ycf48 assembly factor binds to the newly synthesized D1 reaction center polypeptide and promotes the initial steps of PSII assembly, but its binding site is unclear. Here we use cryo-electron microscopy to determine the structure of a cyanobacterial PSII D1/D2 reaction center assembly complex with Ycf48 attached. Ycf48, a 7-bladed beta propeller, binds to the amino-acid residues of D1 that ultimately ligate the water-oxidising Mn4CaO5 cluster, thereby preventing the premature binding of Mn2+ and Ca2+ ions and protecting the site from damage. Interactions with D2 help explain how Ycf48 promotes assembly of the D1/D2 complex. Overall, our work provides valuable insights into the early stages of PSII assembly and the structural changes that create the binding site for the Mn4CaO5 cluster.


Asunto(s)
Cianobacterias , Complejo de Proteína del Fotosistema II , Complejo de Proteína del Fotosistema II/metabolismo , Manganeso/metabolismo , Oxígeno/metabolismo , Microscopía por Crioelectrón , Cianobacterias/metabolismo
3.
Biochem J ; 480(5): 319-333, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36920092

RESUMEN

My group and myself have studied respiratory complex I for almost 30 years, starting in 1994 when it was known as a L-shaped giant 'black box' of bioenergetics. First breakthrough was the X-ray structure of the peripheral arm, followed by structures of the membrane arm and finally the entire complex from Thermus thermophilus. The developments in cryo-EM technology allowed us to solve the first complete structure of the twice larger, ∼1 MDa mammalian enzyme in 2016. However, the mechanism coupling, over large distances, the transfer of two electrons to pumping of four protons across the membrane remained an enigma. Recently we have solved high-resolution structures of mammalian and bacterial complex I under a range of redox conditions, including catalytic turnover. This allowed us to propose a robust and universal mechanism for complex I and related protein families. Redox reactions initially drive conformational changes around the quinone cavity and a long-distance transfer of substrate protons. These set up a stage for a series of electrostatically driven proton transfers along the membrane arm ('domino effect'), eventually resulting in proton expulsion from the distal antiporter-like subunit. The mechanism radically differs from previous suggestions, however, it naturally explains all the unusual structural features of complex I. In this review I discuss the state of knowledge on complex I, including the current most controversial issues.


Asunto(s)
Complejo I de Transporte de Electrón , Protones , Animales , Complejo I de Transporte de Electrón/química , Complejo I de Transporte de Electrón/metabolismo , Modelos Moleculares , Oxidación-Reducción , Metabolismo Energético , Mamíferos/metabolismo
5.
Nature ; 609(7928): 808-814, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36104567

RESUMEN

Complex I is the first enzyme in the respiratory chain, which is responsible for energy production in mitochondria and bacteria1. Complex I couples the transfer of two electrons from NADH to quinone and the translocation of four protons across the membrane2, but the coupling mechanism remains contentious. Here we present cryo-electron microscopy structures of Escherichia coli complex I (EcCI) in different redox states, including catalytic turnover. EcCI exists mostly in the open state, in which the quinone cavity is exposed to the cytosol, allowing access for water molecules, which enable quinone movements. Unlike the mammalian paralogues3, EcCI can convert to the closed state only during turnover, showing that closed and open states are genuine turnover intermediates. The open-to-closed transition results in the tightly engulfed quinone cavity being connected to the central axis of the membrane arm, a source of substrate protons. Consistently, the proportion of the closed state increases with increasing pH. We propose a detailed but straightforward and robust mechanism comprising a 'domino effect' series of proton transfers and electrostatic interactions: the forward wave ('dominoes stacking') primes the pump, and the reverse wave ('dominoes falling') results in the ejection of all pumped protons from the distal subunit NuoL. This mechanism explains why protons exit exclusively from the NuoL subunit and is supported by our mutagenesis data. We contend that this is a universal coupling mechanism of complex I and related enzymes.


Asunto(s)
Microscopía por Crioelectrón , Complejo I de Transporte de Electrón , Escherichia coli , Animales , Transporte de Electrón , Complejo I de Transporte de Electrón/química , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Complejo I de Transporte de Electrón/ultraestructura , Escherichia coli/enzimología , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli/ultraestructura , Proteínas de Escherichia coli , Mutación , NAD/metabolismo , NADH Deshidrogenasa , Oxidación-Reducción , Subunidades de Proteína , Protones , Quinonas/química , Quinonas/metabolismo , Electricidad Estática , Agua/química
6.
Commun Biol ; 5(1): 620, 2022 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-35739187

RESUMEN

Imbalanced mitochondrial dNTP pools are known players in the pathogenesis of multiple human diseases. Here we show that, even under physiological conditions, dGTP is largely overrepresented among other dNTPs in mitochondria of mouse tissues and human cultured cells. In addition, a vast majority of mitochondrial dGTP is tightly bound to NDUFA10, an accessory subunit of complex I of the mitochondrial respiratory chain. NDUFA10 shares a deoxyribonucleoside kinase (dNK) domain with deoxyribonucleoside kinases in the nucleotide salvage pathway, though no specific function beyond stabilizing the complex I holoenzyme has been described for this subunit. We mutated the dNK domain of NDUFA10 in human HEK-293T cells while preserving complex I assembly and activity. The NDUFA10E160A/R161A shows reduced dGTP binding capacity in vitro and leads to a 50% reduction in mitochondrial dGTP content, proving that most dGTP is directly bound to the dNK domain of NDUFA10. This interaction may represent a hitherto unknown mechanism regulating mitochondrial dNTP availability and linking oxidative metabolism to DNA maintenance.


Asunto(s)
Nucleótidos de Desoxiguanina , Complejo I de Transporte de Electrón , NADH Deshidrogenasa , Humanos , Nucleótidos de Desoxiguanina/metabolismo , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Células HEK293 , Mitocondrias/metabolismo , NADH Deshidrogenasa/genética , NADH Deshidrogenasa/metabolismo
7.
Curr Opin Struct Biol ; 74: 102350, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35316665

RESUMEN

Complex I is one of the major respiratory complexes, conserved from bacteria to mammals. It oxidises NADH, reduces quinone and pumps protons across the membrane, thus playing a central role in the oxidative energy metabolism. In this review we discuss our current state of understanding the structure of complex I from various species of mammals, plants, fungi, and bacteria, as well as of several complex I-related proteins. By comparing the structural evidence from these systems in different redox states and data from mutagenesis and molecular simulations, we formulate the mechanisms of electron transfer and proton pumping and explain how they are conformationally and electrostatically coupled. Finally, we discuss the structural basis of the deactivation phenomenon in mammalian complex I.


Asunto(s)
Complejo I de Transporte de Electrón , Protones , Animales , Transporte de Electrón , Complejo I de Transporte de Electrón/química , Metabolismo Energético , Mamíferos/metabolismo , Oxidación-Reducción
8.
Nat Rev Mol Cell Biol ; 23(2): 141-161, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34621061

RESUMEN

The mitochondrial oxidative phosphorylation system is central to cellular metabolism. It comprises five enzymatic complexes and two mobile electron carriers that work in a mitochondrial respiratory chain. By coupling the oxidation of reducing equivalents coming into mitochondria to the generation and subsequent dissipation of a proton gradient across the inner mitochondrial membrane, this electron transport chain drives the production of ATP, which is then used as a primary energy carrier in virtually all cellular processes. Minimal perturbations of the respiratory chain activity are linked to diseases; therefore, it is necessary to understand how these complexes are assembled and regulated and how they function. In this Review, we outline the latest assembly models for each individual complex, and we also highlight the recent discoveries indicating that the formation of larger assemblies, known as respiratory supercomplexes, originates from the association of the intermediates of individual complexes. We then discuss how recent cryo-electron microscopy structures have been key to answering open questions on the function of the electron transport chain in mitochondrial respiration and how supercomplexes and other factors, including metabolites, can regulate the activity of the single complexes. When relevant, we discuss how these mechanisms contribute to physiology and outline their deregulation in human diseases.


Asunto(s)
Mitocondrias/metabolismo , Animales , Transporte de Electrón , Proteínas del Complejo de Cadena de Transporte de Electrón/química , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Humanos , Modelos Moleculares , Complejos Multiproteicos/metabolismo , Fosforilación Oxidativa
9.
Nature ; 598(7880): 364-367, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34616041

RESUMEN

The enzymes of the mitochondrial electron transport chain are key players of cell metabolism. Despite being active when isolated, in vivo they associate into supercomplexes1, whose precise role is debated. Supercomplexes CIII2CIV1-2 (refs. 2,3), CICIII2 (ref. 4) and CICIII2CIV (respirasome)5-10 exist in mammals, but in contrast to CICIII2 and the respirasome, to date the only known eukaryotic structures of CIII2CIV1-2 come from Saccharomyces cerevisiae11,12 and plants13, which have different organization. Here we present the first, to our knowledge, structures of mammalian (mouse and ovine) CIII2CIV and its assembly intermediates, in different conformations. We describe the assembly of CIII2CIV from the CIII2 precursor to the final CIII2CIV conformation, driven by the insertion of the N terminus of the assembly factor SCAF1 (ref. 14) deep into CIII2, while its C terminus is integrated into CIV. Our structures (which include CICIII2 and the respirasome) also confirm that SCAF1 is exclusively required for the assembly of CIII2CIV and has no role in the assembly of the respirasome. We show that CIII2 is asymmetric due to the presence of only one copy of subunit 9, which straddles both monomers and prevents the attachment of a second copy of SCAF1 to CIII2, explaining the presence of one copy of CIV in CIII2CIV in mammals. Finally, we show that CIII2 and CIV gain catalytic advantage when assembled into the supercomplex and propose a role for CIII2CIV in fine tuning the efficiency of electron transfer in the electron transport chain.


Asunto(s)
Respiración de la Célula , Mitocondrias/enzimología , Complejos Multienzimáticos/química , Complejos Multienzimáticos/metabolismo , Ovinos , Animales , Sitios de Unión , Conjuntos de Datos como Asunto , Transporte de Electrón , Ratones , Mitocondrias/metabolismo , Modelos Moleculares , NAD/metabolismo , Ácido Succínico/metabolismo
10.
iScience ; 24(3): 102139, 2021 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-33665558

RESUMEN

Cryo-EM grid preparation is an important bottleneck in protein structure determination, especially for membrane proteins, typically requiring screening of a large number of conditions. We systematically investigated the effects of buffer components, blotting conditions and grid types on the outcome of grid preparation of five different membrane protein samples. Aggregation was the most common type of problem which was addressed by changing detergents, salt concentration or reconstitution of proteins into nanodiscs or amphipols. We show that the optimal concentration of detergent is between 0.05 and 0.4% and that the presence of a low concentration of detergent with a high critical micellar concentration protects the proteins from denaturation at the air-water interface. Furthermore, we discuss the strategies for achieving an adequate ice thickness, particle coverage and orientation distribution on free ice and on support films. Our findings provide a clear roadmap for comprehensive screening of conditions for cryo-EM grid preparation of membrane proteins.

11.
Proc Natl Acad Sci U S A ; 118(1)2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33443187

RESUMEN

N-1-naphthylphthalamic acid (NPA) is a key inhibitor of directional (polar) transport of the hormone auxin in plants. For decades, it has been a pivotal tool in elucidating the unique polar auxin transport-based processes underlying plant growth and development. Its exact mode of action has long been sought after and is still being debated, with prevailing mechanistic schemes describing only indirect connections between NPA and the main transporters responsible for directional transport, namely PIN auxin exporters. Here we present data supporting a model in which NPA associates with PINs in a more direct manner than hitherto postulated. We show that NPA inhibits PIN activity in a heterologous oocyte system and that expression of NPA-sensitive PINs in plant, yeast, and oocyte membranes leads to specific saturable NPA binding. We thus propose that PINs are a bona fide NPA target. This offers a straightforward molecular basis for NPA inhibition of PIN-dependent auxin transport and a logical parsimonious explanation for the known physiological effects of NPA on plant growth, as well as an alternative hypothesis to interpret past and future results. We also introduce PIN dimerization and describe an effect of NPA on this, suggesting that NPA binding could be exploited to gain insights into structural aspects of PINs related to their transport mechanism.


Asunto(s)
Transporte Biológico Activo/efectos de los fármacos , Ácidos Indolacéticos/metabolismo , Ftalimidas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/metabolismo , Animales , Arabidopsis/efectos de los fármacos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Transporte Biológico Activo/genética , Dimerización , Espectrometría de Masas , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Oocitos/efectos de los fármacos , Fosforilación , Ftalimidas/farmacología , Reguladores del Crecimiento de las Plantas/antagonistas & inhibidores , Reguladores del Crecimiento de las Plantas/genética , Proteínas de Plantas/genética , Saccharomyces cerevisiae/metabolismo , Nicotiana/efectos de los fármacos , Nicotiana/metabolismo , Xenopus
12.
Nat Struct Mol Biol ; 27(11): 1077-1085, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32929284

RESUMEN

The majority of adenosine triphosphate (ATP) powering cellular processes in eukaryotes is produced by the mitochondrial F1Fo ATP synthase. Here, we present the atomic models of the membrane Fo domain and the entire mammalian (ovine) F1Fo, determined by cryo-electron microscopy. Subunits in the membrane domain are arranged in the 'proton translocation cluster' attached to the c-ring and a more distant 'hook apparatus' holding subunit e. Unexpectedly, this subunit is anchored to a lipid 'plug' capping the c-ring. We present a detailed proton translocation pathway in mammalian Fo and key inter-monomer contacts in F1Fo multimers. Cryo-EM maps of F1Fo exposed to calcium reveal a retracted subunit e and a disassembled c-ring, suggesting permeability transition pore opening. We propose a model for the permeability transition pore opening, whereby subunit e pulls the lipid plug out of the c-ring. Our structure will allow the design of drugs for many emerging applications in medicine.


Asunto(s)
ATPasas de Translocación de Protón Mitocondriales/ultraestructura , Multimerización de Proteína , Animales , Microscopía por Crioelectrón , ATPasas de Translocación de Protón Mitocondriales/química , Modelos Moleculares , Conformación Proteica , Dominios Proteicos , Subunidades de Proteína/química , Ovinos
13.
Science ; 370(6516)2020 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-32972993

RESUMEN

Mitochondrial complex I couples NADH:ubiquinone oxidoreduction to proton pumping by an unknown mechanism. Here, we present cryo-electron microscopy structures of ovine complex I in five different conditions, including turnover, at resolutions up to 2.3 to 2.5 angstroms. Resolved water molecules allowed us to experimentally define the proton translocation pathways. Quinone binds at three positions along the quinone cavity, as does the inhibitor rotenone that also binds within subunit ND4. Dramatic conformational changes around the quinone cavity couple the redox reaction to proton translocation during open-to-closed state transitions of the enzyme. In the induced deactive state, the open conformation is arrested by the ND6 subunit. We propose a detailed molecular coupling mechanism of complex I, which is an unexpected combination of conformational changes and electrostatic interactions.


Asunto(s)
Complejo I de Transporte de Electrón/química , Quinonas/química , Animales , Sitios de Unión , Microscopía por Crioelectrón , Conformación Proteica , Ovinos
14.
Nat Commun ; 11(1): 4135, 2020 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-32811817

RESUMEN

Complex I is the first and the largest enzyme of respiratory chains in bacteria and mitochondria. The mechanism which couples spatially separated transfer of electrons to proton translocation in complex I is not known. Here we report five crystal structures of T. thermophilus enzyme in complex with NADH or quinone-like compounds. We also determined cryo-EM structures of major and minor native states of the complex, differing in the position of the peripheral arm. Crystal structures show that binding of quinone-like compounds (but not of NADH) leads to a related global conformational change, accompanied by local re-arrangements propagating from the quinone site to the nearest proton channel. Normal mode and molecular dynamics analyses indicate that these are likely to represent the first steps in the proton translocation mechanism. Our results suggest that quinone binding and chemistry play a key role in the coupling mechanism of complex I.


Asunto(s)
Complejo I de Transporte de Electrón/química , Simulación de Dinámica Molecular , Quinonas/química , Thermus thermophilus/enzimología , Regulación Alostérica , Proteínas Bacterianas/química , Microscopía por Crioelectrón , Cristalografía por Rayos X , Transporte de Electrón/genética , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Complejo I de Transporte de Electrón/ultraestructura , Modelos Moleculares , NAD/química , NAD/metabolismo , Redes Neurales de la Computación , Conformación Proteica , Protones , Quinonas/metabolismo , Thermus thermophilus/genética
15.
Elife ; 92020 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-32735215

RESUMEN

Multiple resistance and pH adaptation (Mrp) antiporters are multi-subunit Na+ (or K+)/H+ exchangers representing an ancestor of many essential redox-driven proton pumps, such as respiratory complex I. The mechanism of coupling between ion or electron transfer and proton translocation in this large protein family is unknown. Here, we present the structure of the Mrp complex from Anoxybacillus flavithermus solved by cryo-EM at 3.0 Å resolution. It is a dimer of seven-subunit protomers with 50 trans-membrane helices each. Surface charge distribution within each monomer is remarkably asymmetric, revealing probable proton and sodium translocation pathways. On the basis of the structure we propose a mechanism where the coupling between sodium and proton translocation is facilitated by a series of electrostatic interactions between a cation and key charged residues. This mechanism is likely to be applicable to the entire family of redox proton pumps, where electron transfer to substrates replaces cation movements.


Asunto(s)
Anoxybacillus/metabolismo , Antiportadores/metabolismo , Proteínas Bacterianas/metabolismo , Antiportadores/ultraestructura , Proteínas Bacterianas/ultraestructura , Transporte Biológico Activo , Cationes/metabolismo , Microscopía por Crioelectrón , Escherichia coli , Modelos Moleculares , Complejos Multiproteicos/metabolismo , Complejos Multiproteicos/ultraestructura , Conformación Proteica , Protones , Sodio/metabolismo
16.
Biochim Biophys Acta Bioenerg ; 1861(8): 148213, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32335026

RESUMEN

Mutations in NDUFS4, which encodes an accessory subunit of mitochondrial oxidative phosphorylation (OXPHOS) complex I (CI), induce Leigh syndrome (LS). LS is a poorly understood pediatric disorder featuring brain-specific anomalies and early death. To study the LS pathomechanism, we here compared OXPHOS proteomes between various Ndufs4-/- mouse tissues. Ndufs4-/- animals displayed significantly lower CI subunit levels in brain/diaphragm relative to other tissues (liver/heart/kidney/skeletal muscle), whereas other OXPHOS subunit levels were not reduced. Absence of NDUFS4 induced near complete absence of the NDUFA12 accessory subunit, a 50% reduction in other CI subunit levels, and an increase in specific CI assembly factors. Among the latter, NDUFAF2 was most highly increased. Regarding NDUFS4, NDUFA12 and NDUFAF2, identical results were obtained in Ndufs4-/- mouse embryonic fibroblasts (MEFs) and NDUFS4-mutated LS patient cells. Ndufs4-/- MEFs contained active CI in situ but blue-native-PAGE highlighted that NDUFAF2 attached to an inactive CI subcomplex (CI-830) and inactive assemblies of higher MW. In NDUFA12-mutated LS patient cells, NDUFA12 absence did not reduce NDUFS4 levels but triggered NDUFAF2 association to active CI. BN-PAGE revealed no such association in LS patient fibroblasts with mutations in other CI subunit-encoding genes where NDUFAF2 was attached to CI-830 (NDUFS1, NDUFV1 mutation) or not detected (NDUFS7 mutation). Supported by enzymological and CI in silico structural analysis, we conclude that absence of NDUFS4 induces near complete absence of NDUFA12 but not vice versa, and that NDUFAF2 stabilizes active CI in Ndufs4-/- mice and LS patient cells, perhaps in concert with mitochondrial inner membrane lipids.


Asunto(s)
Complejo I de Transporte de Electrón/deficiencia , Complejo I de Transporte de Electrón/genética , Eliminación de Gen , Enfermedad de Leigh/genética , Proteínas Mitocondriales/metabolismo , Chaperonas Moleculares/metabolismo , NADPH Deshidrogenasa/metabolismo , Animales , Fibroblastos/metabolismo , Técnicas de Inactivación de Genes , Humanos , Enfermedad de Leigh/metabolismo , Ratones , Fosforilación Oxidativa , Estabilidad Proteica
17.
J Am Chem Soc ; 142(20): 9220-9230, 2020 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-32347721

RESUMEN

The mitochondrial respiratory chain, formed by five protein complexes, utilizes energy from catabolic processes to synthesize ATP. Complex I, the first and the largest protein complex of the chain, harvests electrons from NADH to reduce quinone, while pumping protons across the mitochondrial membrane. Detailed knowledge of the working principle of such coupled charge-transfer processes remains, however, fragmentary due to bottlenecks in understanding redox-driven conformational transitions and their interplay with the hydrated proton pathways. Complex I from Thermus thermophilus encases 16 subunits with nine iron-sulfur clusters, reduced by electrons from NADH. Here, employing the latest crystal structure of T. thermophilus complex I, we have used microsecond-scale molecular dynamics simulations to study the chemo-mechanical coupling between redox changes of the iron-sulfur clusters and conformational transitions across complex I. First, we identify the redox switches within complex I, which allosterically couple the dynamics of the quinone binding pocket to the site of NADH reduction. Second, our free-energy calculations reveal that the affinity of the quinone, specifically menaquinone, for the binding-site is higher than that of its reduced, menaquinol form-a design essential for menaquinol release. Remarkably, the barriers to diffusive menaquinone dynamics are lesser than that of the more ubiquitous ubiquinone, and the naphthoquinone headgroup of the former furnishes stronger binding interactions with the pocket, favoring menaquinone for charge transport in T. thermophilus. Our computations are consistent with experimentally validated mutations and hierarchize the key residues into three functional classes, identifying new mutation targets. Third, long-range hydrogen-bond networks connecting the quinone-binding site to the transmembrane subunits are found to be responsible for proton pumping. Put together, the simulations reveal the molecular design principles linking redox reactions to quinone turnover to proton translocation in complex I.


Asunto(s)
Complejo I de Transporte de Electrón/metabolismo , Thermus thermophilus/química , Complejo I de Transporte de Electrón/química , Modelos Moleculares , Thermus thermophilus/metabolismo , Ubiquinona/química , Ubiquinona/metabolismo
18.
Mol Cell ; 75(6): 1131-1146.e6, 2019 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-31492636

RESUMEN

The mitochondrial electron transport chain complexes are organized into supercomplexes (SCs) of defined stoichiometry, which have been proposed to regulate electron flux via substrate channeling. We demonstrate that CoQ trapping in the isolated SC I+III2 limits complex (C)I turnover, arguing against channeling. The SC structure, resolved at up to 3.8 Å in four distinct states, suggests that CoQ oxidation may be rate limiting because of unequal access of CoQ to the active sites of CIII2. CI shows a transition between "closed" and "open" conformations, accompanied by the striking rotation of a key transmembrane helix. Furthermore, the state of CI affects the conformational flexibility within CIII2, demonstrating crosstalk between the enzymes. CoQ was identified at only three of the four binding sites in CIII2, suggesting that interaction with CI disrupts CIII2 symmetry in a functionally relevant manner. Together, these observations indicate a more nuanced functional role for the SCs.


Asunto(s)
Complejo III de Transporte de Electrones/química , Complejo I de Transporte de Electrón/química , Mitocondrias Cardíacas/enzimología , Animales , Cristalografía por Rayos X , Estructura Cuaternaria de Proteína , Ovinos
19.
Science ; 365(6455)2019 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-31439765

RESUMEN

V (vacuolar)/A (archaeal)-type adenosine triphosphatases (ATPases), found in archaea and eubacteria, couple ATP hydrolysis or synthesis to proton translocation across the plasma membrane using the rotary-catalysis mechanism. They belong to the V-type ATPase family, which differs from the mitochondrial/chloroplast F-type ATP synthases in overall architecture. We solved cryo-electron microscopy structures of the intact Thermus thermophilus V/A-ATPase, reconstituted into lipid nanodiscs, in three rotational states and two substates. These structures indicate substantial flexibility between V1 and Vo in a working enzyme, which results from mechanical competition between central shaft rotation and resistance from the peripheral stalks. We also describe details of adenosine diphosphate inhibition release, V1-Vo torque transmission, and proton translocation, which are relevant for the entire V-type ATPase family.


Asunto(s)
Proteínas Bacterianas/química , Thermus thermophilus/enzimología , ATPasas de Translocación de Protón Vacuolares/química , Adenosina Difosfato/química , Catálisis , Microscopía por Crioelectrón , ATPasas de Translocación de Protón Mitocondriales/química , Modelos Químicos , Nanopartículas/química , Filogenia , Dominios Proteicos , Multimerización de Proteína , Especificidad por Sustrato , ATPasas de Translocación de Protón Vacuolares/antagonistas & inhibidores , ATPasas de Translocación de Protón Vacuolares/clasificación
20.
Nature ; 573(7773): 291-295, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31462775

RESUMEN

Proton-translocating transhydrogenase (also known as nicotinamide nucleotide transhydrogenase (NNT)) is found in the plasma membranes of bacteria and the inner mitochondrial membranes of eukaryotes. NNT catalyses the transfer of a hydride between NADH and NADP+, coupled to the translocation of one proton across the membrane. Its main physiological function is the generation of NADPH, which is a substrate in anabolic reactions and a regulator of oxidative status; however, NNT may also fine-tune the Krebs cycle1,2. NNT deficiency causes familial glucocorticoid deficiency in humans and metabolic abnormalities in mice, similar to those observed in type II diabetes3,4. The catalytic mechanism of NNT has been proposed to involve a rotation of around 180° of the entire NADP(H)-binding domain that alternately participates in hydride transfer and proton-channel gating. However, owing to the lack of high-resolution structures of intact NNT, the details of this process remain unclear5,6. Here we present the cryo-electron microscopy structure of intact mammalian NNT in different conformational states. We show how the NADP(H)-binding domain opens the proton channel to the opposite sides of the membrane, and we provide structures of these two states. We also describe the catalytically important interfaces and linkers between the membrane and the soluble domains and their roles in nucleotide exchange. These structures enable us to propose a revised mechanism for a coupling process in NNT that is consistent with a large body of previous biochemical work. Our results are relevant to the development of currently unavailable NNT inhibitors, which may have therapeutic potential in ischaemia reperfusion injury, metabolic syndrome and some cancers7-9.


Asunto(s)
Mitocondrias/enzimología , Modelos Moleculares , NADP Transhidrogenasas/química , NADP Transhidrogenasas/metabolismo , Animales , Microscopía por Crioelectrón , Cristalización , Ratones , Unión Proteica , Dominios Proteicos , Estructura Terciaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...