RESUMEN
BACKGROUND: SARS-CoV-2 variants of concern (VOCs) emerged and rapidly replaced the original strain worldwide. The increased transmissibility of these new variants led to increases in infections, hospitalizations, and mortality. However, there is a scarcity of retrospective investigations examining the severity of all the main VOCs in presence of key public health measures and within various social determinants of health (SDOHs). OBJECTIVE: This study aims to provide a retrospective assessment of the clinical severity of COVID-19 VOCs in the context of heterogenous SDOHs and vaccination rollout. METHODS: We used a population-based retrospective cohort design with data from the British Columbia COVID-19 Cohort, a linked provincial surveillance platform. To assess the relative severity (hospitalizations, intensive care unit [ICU] admissions, and deaths) of Gamma, Delta, and Omicron infections during 2021 relative to Alpha, we used inverse probability treatment weighted Cox proportional hazard modeling. We also conducted a subanalysis among unvaccinated individuals, as assessed severity differed across VOCs and SDOHs. RESULTS: We included 91,964 individuals infected with a SARS-CoV-2 VOC (Alpha: n=20,487, 22.28%; Gamma: n=15,223, 16.55%; Delta: n=49,161, 53.46%; and Omicron: n=7093, 7.71%). Delta was associated with the most severe disease in terms of hospitalization, ICU admissions, and deaths (hospitalization: adjusted hazard ratio [aHR] 2.00, 95% CI 1.92-2.08; ICU: aHR 2.05, 95% CI 1.91-2.20; death: aHR 3.70, 95% CI 3.23-4.25 relative to Alpha), followed generally by Gamma and then Omicron and Alpha. The relative severity by VOC remained similar in the unvaccinated individual subanalysis, although the proportion of individuals infected with Delta and Omicron who were hospitalized was 2 times higher in those unvaccinated than in those fully vaccinated. Regarding SDOHs, the proportion of hospitalized individuals was higher in areas with lower income across all VOCs, whereas among Alpha and Gamma infections, 2 VOCs that cocirculated, differential distributions of hospitalizations were found among racially minoritized groups. CONCLUSIONS: Our study provides robust severity estimates for all VOCs during the COVID-19 pandemic in British Columbia, Canada. Relative to Alpha, we found Delta to be the most severe, followed by Gamma and Omicron. This study highlights the importance of targeted testing and sequencing to ensure timely detection and accurate estimation of severity in emerging variants. It further sheds light on the importance of vaccination coverage and SDOHs in the context of pandemic preparedness to support the prioritization of allocation for resource-constrained or minoritized groups.
Asunto(s)
COVID-19 , Hospitalización , SARS-CoV-2 , Índice de Severidad de la Enfermedad , Humanos , COVID-19/epidemiología , Estudios Retrospectivos , Masculino , Femenino , Persona de Mediana Edad , Adulto , Colombia Británica/epidemiología , Anciano , Hospitalización/estadística & datos numéricos , Adulto Joven , Adolescente , Determinantes Sociales de la Salud , Anciano de 80 o más Años , Niño , Unidades de Cuidados Intensivos/estadística & datos numéricosRESUMEN
The mechanisms facilitating the relationship between low income and COVID-19 severity have not been partitioned in the presence of SARS-CoV-2 variants of concern (VOC). To address this, we used causal mediation analysis to quantify the possible mediating role infection with VOC has on the relationship between neighbourhood income (exposure) and hospitalisation due to COVID-19 among cases (outcome). A population-based cohort of 65,629 individuals residing in British Columbia, Canada, was divided into three periods of VOC co-circulation in the 2021 calendar year whereby each period included co-circulation of an emerging and an established VOC. Each cohort was subjected to g-formula mediation techniques to decompose the relationship between exposure and outcome into total, direct and indirect effects. In the mediation analysis, the total effects indicated that low income was associated with increased odds of hospitalisation across all periods. Further decomposition of the effects revealed that income is directly and indirectly associated with hospitalisation. The resulting indirect effect through VOC accounted for approximately between 6 and 13% of the total effect of income on hospitalisation. This study underscores, conditional on the analysis, the importance of addressing underlying inequities to mitigate the disproportionate impact on historically marginalised communities by adopting an equity lens as central to pandemic preparedness and response from the onset.
RESUMEN
BACKGROUND: Evidence suggests that prenatal air pollution exposure alters DNA methylation (DNAm), which could go on to affect long-term health. It remains unclear whether DNAm alterations present at birth persist through early life. Identifying persistent DNAm changes would provide greater insight into the molecular mechanisms contributing to the association of prenatal air pollution exposure with atopic diseases. OBJECTIVES: This study investigated DNAm differences associated with prenatal nitrogen dioxide (NO2) exposure (a surrogate measure of traffic-related air pollution) at birth and 1 y of age and examined their role in atopic disease. We focused on regions showing persistent DNAm differences from birth to 1 y of age and regions uniquely associated with postnatal NO2 exposure. METHODS: Microarrays measured DNAm at birth and at 1 y of age for an atopy-enriched subset of Canadian Health Infant Longitudinal Development (CHILD) study participants. Individual and regional DNAm differences associated with prenatal NO2 (n=128) were identified, and their persistence at age 1 y were investigated using linear mixed effects models (n=124). Postnatal-specific DNAm differences (n=125) were isolated, and their association with NO2 in the first year of life was examined. Causal mediation investigated whether DNAm differences mediated associations between NO2 and age 1 y atopy or wheeze. Analyses were repeated using biological sex-stratified data. RESULTS: At birth (n=128), 18 regions of DNAm were associated with NO2, with several annotated to HOX genes. Some of these regions were specifically identified in males (n=73), but not females (n=55). The effect of prenatal NO2 across CpGs within altered regions persisted at 1 y of age. No significant mediation effects were identified. Sex-stratified analyses identified postnatal-specific DNAm alterations. DISCUSSION: Regional cord blood DNAm differences associated with prenatal NO2 persisted through at least the first year of life in CHILD participants. Some differences may represent sex-specific alterations, but replication in larger cohorts is needed. The early postnatal period remained a sensitive window to DNAm perturbations. https://doi.org/10.1289/EHP13034.
Asunto(s)
Contaminación del Aire , Metilación de ADN , Recién Nacido , Lactante , Masculino , Femenino , Embarazo , Humanos , Estudios Prospectivos , Canadá/epidemiología , Sangre FetalRESUMEN
Purpose: The British Columbia COVID-19 Cohort (BCC19C) was developed from an innovative, dynamic surveillance platform and is accessed/analyzed through a cloud-based environment. The platform integrates recently developed provincial COVID-19 datasets (refreshed daily) with existing administrative holdings and provincial registries (refreshed weekly/monthly). The platform/cohort were established to inform the COVID-19 response in near "real-time" and to answer more in-depth epidemiologic questions. Participants: The surveillance platform facilitates the creation of large, up-to-date analytic cohorts of people accessing COVID-19 related services and their linked medical histories. The program of work focused on creating/analyzing these cohorts is referred to as the BCC19C. The administrative/registry datasets integrated within the platform are not specific to COVID-19 and allow for selection of "control" individuals who have not accessed COVID-19 services. Findings to date: The platform has vastly broadened the range of COVID-19 analyses possible, and outputs from BCC19C analyses have been used to create dashboards, support routine reporting and contribute to the peer-reviewed literature. Published manuscripts (total of 15 as of July, 2023) have appeared in high-profile publications, generated significant media attention and informed policy and programming. In this paper, we conducted an analysis to identify sociodemographic and health characteristics associated with receiving SARS-CoV-2 laboratory testing, testing positive, and being fully vaccinated. Other published analyses have compared the relative clinical severity of different variants of concern; quantified the high "real-world" effectiveness of vaccines in addition to the higher risk of myocarditis among younger males following a 2nd dose of an mRNA vaccine; developed and validated an algorithm for identifying long-COVID patients in administrative data; identified a higher rate of diabetes and healthcare utilization among people with long-COVID; and measured the impact of the pandemic on mental health, among other analyses. Future plans: While the global COVID-19 health emergency has ended, our program of work remains robust. We plan to integrate additional datasets into the surveillance platform to further improve and expand covariate measurement and scope of analyses. Our analyses continue to focus on retrospective studies of various aspects of the COVID-19 pandemic, as well as prospective assessment of post-acute COVID-19 conditions and other impacts of the pandemic.
Asunto(s)
COVID-19 , Masculino , Humanos , COVID-19/epidemiología , Síndrome Post Agudo de COVID-19 , Colombia Británica/epidemiología , Pandemias , Estudios Prospectivos , Estudios Retrospectivos , SARS-CoV-2RESUMEN
We assessed the association between cirrhosis and severe COVID-19-related outcomes among people with laboratory-diagnosed COVID-19 infection in British Columbia, Canada. We used data from the British Columbia (BC) COVID-19 Cohort, a population-based cohort that integrates data on all individuals tested for COVID-19, with data on hospitalizations, medical visits, emergency room visits, prescription drugs, chronic conditions, and deaths in the Canadian province of BC. We included all individuals aged ≥18 who tested positive for SARS-CoV-2 by real-time reverse transcription-polymerase chain reaction from 1 January 2021 to 31 December 2021. Multivariable logistic regression models were used to assess the associations of cirrhosis status with COVID-19-related hospitalization and with ICU admission. Of the 162,509 individuals who tested positive for SARS-CoV-2 and were included in the analysis, 768 (0.5%) had cirrhosis. In the multivariable models, cirrhosis was associated with increased odds of hospitalization (aOR = 1.97, 95% CI: 1.58-2.47) and ICU admission (aOR = 3.33, 95% CI: 2.56-4.35). In the analyses stratified by age, we found that the increased odds of ICU admission among people with cirrhosis were present in all the assessed age-groups. Cirrhosis is associated with increased odds of hospitalization and ICU admission among COVID-19 patients.
Asunto(s)
COVID-19 , Humanos , COVID-19/complicaciones , COVID-19/epidemiología , SARS-CoV-2 , Estudios de Cohortes , Cirrosis Hepática/complicaciones , Cirrosis Hepática/epidemiología , Colombia Británica/epidemiologíaRESUMEN
BACKGROUND: The 2022-2023 global mpox outbreak disproportionately affected gay, bisexual, and other men who have sex with men (GBM). We investigated differences in GBM's sexual partner distributions across Canada's 3 largest cities and over time, and how they shaped transmission. METHODS: The Engage Cohort Study (2017-2023) recruited GBM via respondent-driven sampling in Montréal, Toronto, and Vancouver (n = 2449). We compared reported sexual partner distributions across cities and periods: before COVID-19 (2017-2019), pandemic (2020-2021), and after lifting of restrictions (2021-2023). We used Bayesian regression and poststratification to model partner distributions. We estimated mpox's basic reproduction number (R0) using a risk-stratified compartmental model. RESULTS: Pre-COVID-19 pandemic distributions were comparable: fitted average partners (past 6 months) were 10.4 (95% credible interval: 9.4-11.5) in Montréal, 13.1 (11.3-15.1) in Toronto, and 10.7 (9.5-12.1) in Vancouver. Sexual activity decreased during the pandemic and increased after lifting of restrictions, but remained below prepandemic levels. Based on reported cases, we estimated R0 of 2.4 to 2.7 and similar cumulative incidences (0.7%-0.9%) across cities. CONCLUSIONS: Similar sexual partner distributions may explain comparable R0 and cumulative incidence across cities. With potential for further recovery in sexual activity, mpox vaccination and surveillance strategies should be maintained.
Asunto(s)
Infecciones por VIH , Mpox , Minorías Sexuales y de Género , Masculino , Humanos , Homosexualidad Masculina , Estudios de Cohortes , Teorema de Bayes , Pandemias , Infecciones por VIH/epidemiología , Conducta Sexual , Canadá/epidemiologíaRESUMEN
In British Columbia, Canada, initial growth of the SARS-CoV-2 Delta variant was slower than that reported in other jurisdictions. Delta became the dominant variant (>50% prevalence) within ≈7-13 weeks of first detection in regions within the United Kingdom and United States. In British Columbia, it remained at <10% of weekly incident COVID-19 cases for 13 weeks after first detection on March 21, 2021, eventually reaching dominance after 17 weeks. We describe the growth of Delta variant cases in British Columbia during March 1-June 30, 2021, and apply retrospective counterfactual modeling to examine factors for the initially low COVID-19 case rate after Delta introduction, such as vaccination coverage and nonpharmaceutical interventions. Growth of COVID-19 cases in the first 3 months after Delta emergence was likely limited in British Columbia because additional nonpharmaceutical interventions were implemented to reduce levels of contact at the end of March 2021, soon after variant emergence.
Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Colombia Británica/epidemiología , SARS-CoV-2/genética , Estudios Retrospectivos , COVID-19/epidemiología , COVID-19/prevención & controlRESUMEN
OBJECTIVES: We sought to 1) identify long COVID phenotypes based on patient reported outcome measures (PROMs) and 2) determine whether the phenotypes were associated with quality of life (QoL) and/or lung function. METHODS: This was a longitudinal cohort study of hospitalized and non-hospitalized patients from March 2020 to January 2022 that was conducted across 4 Post-COVID Recovery Clinics in British Columbia, Canada. Latent class analysis was used to identify long COVID phenotypes using baseline PROMs (fatigue, dyspnea, cough, anxiety, depression, and post-traumatic stress disorder). We then explored the association between the phenotypes and QoL (using the EuroQoL 5 dimensions visual analogue scale [EQ5D VAS]) and lung function (using the diffusing capacity of the lung for carbon monoxide [DLCO]). RESULTS: There were 1,344 patients enrolled in the study (mean age 51 ±15 years; 780 [58%] were females; 769 (57%) were of a non-White race). Three distinct long COVID phenotypes were identified: Class 1) fatigue and dyspnea, Class 2) anxiety and depression, and Class 3) fatigue, dyspnea, anxiety, and depression. Class 3 had a significantly lower EQ5D VAS at 3 (50±19) and 6 months (54 ± 22) compared to Classes 1 and 2 (p<0.001). The EQ5D VAS significantly improved between 3 and 6 months for Class 1 (median difference of 6.0 [95% CI, 4.0 to 8.0]) and Class 3 (median difference of 5.0 [95% CI, 0 to 8.5]). There were no differences in DLCO between the classes. CONCLUSIONS: There were 3 distinct long COVID phenotypes with different outcomes in QoL between 3 and 6 months after symptom onset. These phenotypes suggest that long COVID is a heterogeneous condition with distinct subpopulations who may have different outcomes and warrant tailored therapeutic approaches.
Asunto(s)
COVID-19 , Calidad de Vida , Femenino , Humanos , Masculino , Estudios Longitudinales , Síndrome Post Agudo de COVID-19 , Análisis de Clases Latentes , Disnea , Medición de Resultados Informados por el Paciente , Fatiga , Colombia BritánicaRESUMEN
INTRODUCTION: Allergic conditions, such as asthma, hay fever and eczema, are some of the most common conditions impacting children globally. There is a strong incentive to study their determinants to improve their prevention. Asthma, hay fever and eczema are influenced through the same immunological pathway and often copresent in children ('the atopic march'). Increasing evidence shows a link between infant antibiotic use and the risk of childhood atopic conditions, mediated through gut microbial dysbiosis during immune system maturation, however, the potential for confounding remains. This study will investigate the relationship between infant antibiotic use and risk of allergic conditions in British Columbian and Manitoban children born over 10 years, adjusting for relevant confounders. METHODS AND ANALYSIS: Provincial administrative datasets will be linked to perform comparable retrospective cohort analyses, using Population Data BC and the Manitoba Population Research Data Repository. All infants born between 2001 and 2011 in BC and Manitoba will be included (approximately 460 000 and 162 500 infants, respectively), following up to age 7. Multivariable logistic regression will determine the outcome risk by the fifth birthday among children who did and did not receive antibiotics before their first birthday. Clinical, demographic and environmental covariates will be explored, and sensitivity analyses performed to reduce confounding by indication. ETHICS AND DISSEMINATION: The University of British Columbia Research Ethics Board (H19-03255) and University of Manitoba Ethics Board (HS25156 (H2021:328)) have approved this study. Data stewardship committees for all administrative datasets have granted permissions, facilitated by Population Data BC and the Manitoba Centre for Health Policy. Permissions from the Canadian Health Infant Longitudinal Development Study are being sought for breastfeeding data (CP185). Findings will be published in scientific journals and presented at infectious disease and respiratory health conferences. A stakeholder committee will guide and enhance sensitive and impactful communication of the findings to new parents.
Asunto(s)
Asma , Eccema , Hipersensibilidad , Rinitis Alérgica Estacional , Lactante , Femenino , Niño , Humanos , Estudios Retrospectivos , Manitoba/epidemiología , Antibacterianos/efectos adversos , Colombia Británica/epidemiología , Hipersensibilidad/epidemiología , Hipersensibilidad/tratamiento farmacológico , Asma/tratamiento farmacológico , Eccema/epidemiología , Eccema/tratamiento farmacológico , Estudios de CohortesRESUMEN
INTRODUCTION: We compared the population rate of COVID-19 and influenza hospitalisations by age, COVID-19 vaccine status and pandemic phase, which was lacking in other studies. METHOD: We conducted a population-based study using hospital data from the province of British Columbia (population 5.3 million) in Canada with universal healthcare coverage. We created two cohorts of COVID-19 hospitalisations based on date of admission: annual cohort (March 2020 to February 2021) and peak cohort (Omicron era; first 10 weeks of 2022). For comparison, we created influenza annual and peak cohorts using three historical periods years to capture varying severity and circulating strains: 2009/2010, 2015/2016 and 2016/2017. We estimated hospitalisation rates per 100 000 population. RESULTS: COVID-19 and influenza hospitalisation rates by age group were 'J' shaped. The population rate of COVID-19 hospital admissions in the annual cohort (mostly unvaccinated; public health restrictions in place) was significantly higher than influenza among individuals aged 30-69 years, and comparable to the severe influenza year (2016/2017) among 70+. In the peak COVID-19 cohort (mostly vaccinated; few restrictions in place), the hospitalisation rate was comparable with influenza 2016/2017 in all age groups, although rates among the unvaccinated population were still higher than influenza among 18+. Among people aged 5-17 years, COVID-19 hospitalisation rates were lower than/comparable to influenza years in both cohorts. The COVID-19 hospitalisation rate among 0-4 years old, during Omicron, was higher than influenza 2015/2016 and 2016/2017 and lower than 2009/2010 pandemic. CONCLUSIONS: During first Omicron wave, COVID-19 hospitalisation rates were significantly higher than historical influenza hospitalisation rates for unvaccinated adults but were comparable to influenza for vaccinated adults. For children, in the context of high infection levels, hospitalisation rates for COVID-19 were lower than 2009/2010 H1N1 influenza and comparable (higher for 0-4) to non-pandemic years, regardless of the vaccine status.
Asunto(s)
COVID-19 , Subtipo H1N1 del Virus de la Influenza A , Vacunas contra la Influenza , Gripe Humana , Adulto , Niño , Humanos , Recién Nacido , Lactante , Preescolar , Gripe Humana/epidemiología , Gripe Humana/prevención & control , Colombia Británica/epidemiología , Vacunas contra la COVID-19 , COVID-19/epidemiología , HospitalizaciónRESUMEN
The SARS-CoV-2 variant Omicron emerged in late 2021. In British Columbia (BC), Canada, and globally, three genetically distinct subvariants of Omicron, BA.1, BA.2, and BA.5, emerged and became dominant successively within an 8-month period. SARS-CoV-2 subvariants continue to circulate in the population, acquiring new mutations that have the potential to alter infectivity, immunity, and disease severity. Here, we report a propensity-matched severity analysis from residents of BC over the course of the Omicron wave, including 39,237 individuals infected with BA.1, BA.2, or BA.5 based on paired high-quality sequence data and linked to comprehensive clinical outcomes data between December 23, 2021 and August 31, 2022. Relative to BA.1, BA.2 cases were associated with a 15% and 28% lower risk of hospitalization and intensive care unit (ICU) admission (aHRhospital = 1.17; 95% confidence interval [CI] = 1.096-1.252; aHRICU = 1.368; 95% CI = 1.152-1.624), whereas BA.5 infections were associated with an 18% higher risk of hospitalization (aHRhospital = 1.18; 95% CI = 1.133-1.224) after accounting for age, sex, comorbidities, vaccination status, geography, and social determinants of health. Phylogenetic analysis revealed no specific subclades associated with more severe clinical outcomes for any Omicron subvariant. In summary, BA.1, BA.2, and BA.5 subvariants were associated with differences in clinical severity, emphasizing how variant-specific monitoring programs remain critical components of patient and population-level public health responses as the pandemic continues.
Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Colombia Británica/epidemiología , SARS-CoV-2/genética , Estudios de Cohortes , Filogenia , COVID-19/epidemiologíaRESUMEN
OBJECTIVES: With the uptake of COVID-19 vaccines, there is a need for population-based studies to assess risk factors for COVID-19-related hospitalization after vaccination and how they differ from unvaccinated individuals. METHODS: We used data from the British Columbia COVID-19 Cohort, a population-based cohort that includes all individuals (aged ≥18 years) who tested positive for SARS-CoV-2 by real-time reverse transcription-polymerase chain reaction from January 1, 2021 (after the start of vaccination program) to December 31, 2021. We used multivariable logistic regression models to assess COVID-19-related hospitalization risk by vaccination status and age group among confirmed COVID-19 cases. RESULTS: Of the 162,509 COVID-19 cases included in the analysis, 8,546 (5.3%) required hospitalization. Among vaccinated individuals, an increased odds of hospitalization with increasing age was observed for older age groups, namely those aged 50-59 years (odds ratio [OR] = 2.95, 95% confidence interval [CI]: 2.01-4.33), 60-69 years (OR = 4.82, 95% CI: 3.29, 7.07), 70-79 years (OR = 11.92, 95% CI: 8.02, 17.71), and ≥80 years (OR = 24.25, 95% CI: 16.02, 36.71). However, among unvaccinated individuals, there was a graded increase in odds of hospitalization with increasing age, starting at age group 30-39 years (OR = 2.14, 95% CI: 1.90, 2.41) to ≥80 years (OR = 41.95, 95% CI: 35.43, 49.67). Also, comparing all the age groups to the youngest, the observed magnitude of association was much higher among unvaccinated individuals than vaccinated ones. CONCLUSION: Alongside a number of comorbidities, our findings showed a strong association between age and COVID-19-related hospitalization, regardless of vaccination status. However, age-related hospitalization risk was reduced two-fold by vaccination, highlighting the need for vaccination in reducing the risk of severe disease and subsequent COVID-19-related hospitalization across all population groups.
Asunto(s)
COVID-19 , Humanos , Anciano , Adolescente , Adulto , Anciano de 80 o más Años , COVID-19/epidemiología , COVID-19/prevención & control , Vacunas contra la COVID-19 , Estudios de Cohortes , SARS-CoV-2 , Factores de Riesgo , Colombia Británica/epidemiología , Vacunación , HospitalizaciónRESUMEN
BACKGROUND: In late 2021, the Omicron severe acute respiratory syndrome coronavirus 2 variant emerged and rapidly replaced Delta as the dominant variant. The increased transmissibility of Omicron led to surges in case rates and hospitalizations; however, the true severity of the variant remained unclear. We aimed to provide robust estimates of Omicron severity relative to Delta. METHODS: This retrospective cohort study was conducted with data from the British Columbia COVID-19 Cohort, a large provincial surveillance platform with linkage to administrative datasets. To capture the time of cocirculation with Omicron and Delta, December 2021 was chosen as the study period. Whole-genome sequencing was used to determine Omicron and Delta variants. To assess the severity (hospitalization, intensive care unit [ICU] admission, length of stay), we conducted adjusted Cox proportional hazard models, weighted by inverse probability of treatment weights (IPTW). RESULTS: The cohort was composed of 13 128 individuals (7729 Omicron and 5399 Delta). There were 419 coronavirus disease 2019 hospitalizations, with 118 (22%) among people diagnosed with Omicron (crude rate = 1.5% Omicron, 5.6% Delta). In multivariable IPTW analysis, Omicron was associated with a 50% lower risk of hospitalization compared with Delta (adjusted hazard ratio [aHR] = 0.50, 95% confidence interval [CI] = 0.43 to 0.59), a 73% lower risk of ICU admission (aHR = 0.27, 95% CI = 0.19 to 0.38), and a 5-day shorter hospital stay (aß = -5.03, 95% CI = -8.01 to -2.05). CONCLUSIONS: Our analysis supports findings from other studies that have demonstrated lower risk of severe outcomes in Omicron-infected individuals relative to Delta.
Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Colombia Británica/epidemiología , SARS-CoV-2/genética , Estudios Retrospectivos , COVID-19/epidemiologíaRESUMEN
Background: Long coronavirus disease (COVID) patients experience persistent symptoms after acute severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Healthcare utilization data could provide critical information on the disease burden of long COVID for service planning; however, not all patients are diagnosed or assigned long COVID diagnostic codes. We developed an algorithm to identify individuals with long COVID using population-level health administrative data from British Columbia (BC), Canada. Methods: An elastic net penalized logistic regression model was developed to identify long COVID patients based on demographic characteristics, pre-existing conditions, COVID-19-related data, and all symptoms/conditions recorded >28-183 days after the COVID-19 symptom onset/reported (index) date of known long COVID patients (n = 2430) and a control group (n = 24 300), selected from all adult COVID-19 cases in BC with an index date on/before October 31, 2021 (n = 168 111). Known long COVID cases were diagnosed in a clinic and/or had the International Classification of Diseases, Tenth Revision, Canada (ICD-10-CA) code for "post COVID-19 condition" in their records. Results: The algorithm retained known symptoms/conditions associated with long COVID, demonstrating high sensitivity (86%), specificity (86%), and area under the receiver operator curve (93%). It identified 25 220 (18%) long COVID patients among the remaining 141 381 adult COVID-19 cases, >10 times the number of known cases. Known and predicted long COVID patients had comparable demographic and health-related characteristics. Conclusions: Our algorithm identified long COVID patients with a high level of accuracy. This large cohort of long COVID patients will serve as a platform for robust assessments on the clinical course of long COVID, and provide much needed concrete information for decision-making.
RESUMEN
Background: COVID-19 vaccination is a key public health measure in the pandemic response. The rapid evolution of SARS-CoV-2 variants introduce new groups of spike protein mutations. These new mutations are thought to aid in the evasion of vaccine-induced immunity and render vaccines less effective. However, not all spike mutations contribute equally to vaccine escape. Previous studies associate mutations with vaccine breakthrough infections (BTI), but information at the population level remains scarce. We aimed to identify spike mutations associated with SARS-CoV-2 vaccine BTI in a community setting during the emergence and predominance of the Delta-variant. Methods: This case-control study used both genomic, and epidemiological data from a provincial COVID-19 surveillance program. Analyses were stratified into two periods approximating the emergence and predominance of the Delta-variant, and restricted to primary SARS-CoV-2 infections from either unvaccinated individuals, or those infected ≥14 days after their second vaccination dose in a community setting. Each sample's spike mutations were concatenated into a unique spike mutation profile (SMP). Penalized logistic regression was used to identify spike mutations and SMPs associated with SARS-CoV-2 vaccine BTI in both time periods. Results and Discussion: This study reports population level relative risk estimates, between 2 and 4-folds, of spike mutation profiles associated with BTI during the emergence and predominance of the Delta-variant, which comprised 19,624 and 17,331 observations, respectively. The identified mutations cover multiple spike domains including the N-terminal domain (NTD), receptor binding domain (RBD), S1/S2 cleavage region, fusion peptide and heptad regions. Mutations in these different regions imply various mechanisms contribute to vaccine escape. Our profiling method identifies naturally occurring spike mutations associated with BTI, and can be applied to emerging SARS-CoV-2 variants with novel groups of spike mutations.
Asunto(s)
COVID-19 , Colombia Británica , COVID-19/epidemiología , COVID-19/prevención & control , Vacunas contra la COVID-19 , Estudios de Casos y Controles , Humanos , Mutación , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/metabolismoRESUMEN
BACKGROUND: The Canadian coronavirus disease 2019 (COVID-19) immunization strategy deferred second doses and allowed mixed schedules. We compared 2-dose vaccine effectiveness (VE) by vaccine type (mRNA and/or ChAdOx1), interval between doses, and time since second dose in 2 of Canada's larger provinces. METHODS: Two-dose VE against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection or hospitalization among adults ≥18 years, including due to Alpha, Gamma, and Delta variants of concern (VOCs), was assessed ≥14 days postvaccination by test-negative design studies separately conducted in British Columbia and Quebec, Canada, between 30 May and 27 November (epi-weeks 22-47) 2021. RESULTS: In both provinces, all homologous or heterologous mRNA and/or ChAdOx1 2-dose schedules were associated with ≥90% reduction in SARS-CoV-2 hospitalization risk for ≥7 months. With slight decline from a peak of >90%, VE against infection was ≥80% for ≥6 months following homologous mRNA vaccination, lower by â¼10% when both doses were ChAdOx1 but comparably high following heterologous ChAdOx1 + mRNA receipt. Findings were similar by age group, sex, and VOC. VE was significantly higher with longer 7-8-week versus manufacturer-specified 3-4-week intervals between mRNA doses. CONCLUSIONS: Two doses of any mRNA and/or ChAdOx1 combination gave substantial and sustained protection against SARS-CoV-2 hospitalization, spanning Delta-dominant circulation. ChAdOx1 VE against infection was improved by heterologous mRNA series completion. A 7-8-week interval between first and second doses improved mRNA VE and may be the optimal schedule outside periods of intense epidemic surge. Findings support interchangeability and extended intervals between SARS-CoV-2 vaccine doses, with potential global implications for low-coverage areas and, going forward, for children.
Asunto(s)
COVID-19 , SARS-CoV-2 , Adulto , Niño , Humanos , Colombia Británica/epidemiología , Quebec/epidemiología , Vacunas contra la COVID-19 , Eficacia de las Vacunas , COVID-19/epidemiología , COVID-19/prevención & control , ARN MensajeroRESUMEN
BACKGROUND: Growing evidence suggests that exposure to green space is associated with improved childhood health and development, but the influence of different green space types remains relatively unexplored. In the present study, we investigated the association between early-life residential exposure to vegetation and early childhood development and evaluated whether associations differed according to land cover types, including paved land. METHODS: Early childhood development was assessed via kindergarten teacher-ratings on the Early Development Instrument (EDI) in a large population-based birth cohort (n = 27,539) in Metro Vancouver, Canada. The residential surrounding environment was characterized using a high spatial resolution land cover map that was linked to children by six-digit residential postal codes. Early-life residential exposure (from birth to time of EDI assessment, mean age = 5.6 years) was calculated as the mean of annual percentage values of different land cover classes (i.e., total vegetation, tree cover, grass cover, paved surfaces) within a 250 m buffer zone of postal code centroids. Multilevel models were used to analyze associations between respective land cover classes and early childhood development. RESULTS: In adjusted models, one interquartile range increase in total vegetation percentage was associated with a 0.33 increase in total EDI score (95% CI: 0.21, 0.45). Similar positive associations were observed for tree cover (ß-coefficient: 0.26, 95% CI: 0.15, 0.37) and grass cover (ß-coefficient: 0.12, 95% CI: 0.02, 0.22), while negative associations were observed for paved surfaces (ß-coefficient: -0.35, 95% CI: -0.47, -0.23). CONCLUSIONS: Our findings indicate that increased early-life residential exposure to vegetation is positively associated with early childhood developmental outcomes, and that associations may be stronger for residential exposure to tree cover relative to grass cover. Our results further indicate that childhood development may be negatively associated with residential exposure to paved surfaces. These findings can inform urban planning to support early childhood developmental health.
Asunto(s)
Cohorte de Nacimiento , Parques Recreativos , Niño , Desarrollo Infantil , Preescolar , Estudios de Cohortes , Ambiente , Humanos , ÁrbolesRESUMEN
Background: The Kappa variant is designated as a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant of interest (VOI). We identified 195 Kappa variant cases in a region of British Columbia, Canada-the largest published cluster in North America. Objectives: To describe the epidemiology of the Kappa variant in relation to other circulating SARS-CoV-2 variants of concern (VOC) in the region to determine if the epidemiology of the Kappa variant supports a VOI or VOC status. Methods: Clinical specimens testing positive for SARS-CoV-2 collected between March 10 and May 2, 2021, were screened for the detection of known circulating VOCs; approximately 50% of specimens were subsequently selected for whole genome sequencing (WGS). Epidemiological analysis was performed comparing the characteristics of Kappa cases to the main circulating variants in the region (Alpha and Gamma) and to non-VOC/VOI cases. Results: A total of 2,079 coronavirus disease 2019 (COVID-19) cases were reported in the region during the study period, of which 54% were selected for WGS. The 1,131 sequenced cases were categorized into Kappa, Alpha, Gamma and non-VOC/VOI. While Alpha and Gamma cases were found to have a significantly higher attack rate among household contacts compared to non-VOI/VOC cases, Kappa was not. Conclusion: Epidemiological analysis supports the designation of Kappa as a VOI and not a VOC. The Alpha and Gamma variants were found to be more transmissible, explaining their subsequent dominance in the region and the rapid disappearance of the Kappa variant. Variant surveillance strategies should focus on both detection of established VOCs and detection of potential new VOCs.
RESUMEN
BACKGROUND: Emerging studies have associated low greenspace and high air pollution exposure with risk of child attention deficit/hyperactivity disorder (ADHD). Population-based studies are limited, however, and joint effects are rarely evaluated. We investigated associations of ADHD incidence with greenspace, air pollution, and noise in a population-based birth cohort. METHODS: We assembled a cohort from administrative data of births from 2000 to 2001 (N â¼ 37,000) in Metro Vancouver, Canada. ADHD was identified by hospital records, physician visits, and prescriptions. Cox proportional hazards models were applied to assess associations between environmental exposures and ADHD incidence adjusting for available covariates. Greenspace was estimated using vegetation percentage derived from linear spectral unmixing of Landsat imagery. Fine particulate matter (PM2.5) and nitrogen dioxide (NO2) were estimated using land use regression models; noise was estimated using a deterministic model. Exposure period was from birth until the age of three. Joint effects of greenspace and PM2.5 were analysed in two-exposure models and by categorizing values into quintiles. RESULTS: During seven-year follow-up, 1217 ADHD cases were diagnosed. Greenspace was associated with lower incidence of ADHD (hazard ratio, HR: 0.90 [0.81-0.99] per interquartile range increment), while PM2.5 was associated with increased incidence (HR: 1.11 [1.06-1.17] per interquartile range increment). NO2 (HR: 1.01 [0.96, 1.07]) and noise (HR: 1.00 [0.95, 1.05]) were not associated with ADHD. There was a 50% decrease in the HR for ADHD in locations with the lowest PM2.5 and highest greenspace exposure, compared to a 62% increase in HR in locations with the highest PM2.5 and lowest greenspace exposure. Effects of PM2.5 were attenuated by greenspace in two-exposure models. CONCLUSIONS: We found evidence suggesting environmental inequalities where children living in greener neighborhoods with low air pollution had substantially lower risk of ADHD compared to those with higher air pollution and lower greenspace exposure.
Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Trastorno por Déficit de Atención con Hiperactividad , Contaminantes Atmosféricos/análisis , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Trastorno por Déficit de Atención con Hiperactividad/epidemiología , Niño , Estudios de Cohortes , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/análisis , Humanos , Incidencia , Material Particulado/efectos adversos , Material Particulado/análisisRESUMEN
BACKGROUND: In British Columbia, Canada, most adults 50-69 years old became eligible for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine in April 2021, with chimpanzee adenoviral vectored vaccine (ChAdOx1) restricted to ≥55-year-olds and second doses deferred ≥6 weeks to optimize single-dose coverage. METHODS: Among adults 50-69 years old, single-dose messenger RNA (mRNA) and ChAdOx1 vaccine effectiveness (VE) against SARS-CoV-2 infection and hospitalization, including variant-specific, was assessed by test-negative design between 4 April and 2 October 2021. RESULTS: Single-dose VE included 11â 861 cases and 99â 544 controls. Median of postvaccination follow-up was 32 days (interquartile range, 15-52 days). Alpha, Gamma, and Delta variants comprised 23%, 18%, and 56%, respectively, of genetically characterized viruses. At 21-55 days postvaccination, single-dose mRNA and ChAdOx1 VE (95% confidence interval [CI]) was 74% (71%-76%) and 59% (53%-65%) against any infection and 86% (80%-90%) and 94% (85%-97%) against hospitalization, respectively. VE (95% CI) was similar against Alpha and Gamma infections for mRNA (80% [76%-84%] and 80% [75%-84%], respectively) and ChAdOx1 (69% [60%-76%] and 66% [56%-73%], respectively). mRNA VE was lower at 63% (95% CI, 56%-69%) against Delta but 85% (95% CI, 71%-92%) against Delta-associated hospitalization (nonestimable for ChAdOx1). CONCLUSIONS: A single mRNA or ChAdOx1 vaccine dose gave important protection against SARS-CoV-2, including early variants of concern. ChAdOx1 VE was lower against infection, but 1 dose of either vaccine reduced the hospitalization risk by >85% to at least 8 weeks postvaccination. Findings inform program options, including longer dosing intervals.