Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
2.
Cardiovasc Res ; 119(11): 2089-2105, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37052590

RESUMEN

AIMS: Haploinsufficiency of the chromo-domain protein CHD7 underlies most cases of CHARGE syndrome, a multisystem birth defect including congenital heart malformation. Context specific roles for CHD7 in various stem, progenitor, and differentiated cell lineages have been reported. Previously, we showed severe defects when Chd7 is absent from cardiopharyngeal mesoderm (CPM). Here, we investigate altered gene expression in the CPM and identify specific CHD7-bound target genes with known roles in the morphogenesis of affected structures. METHODS AND RESULTS: We generated conditional KO of Chd7 in CPM and analysed cardiac progenitor cells using transcriptomic and epigenomic analyses, in vivo expression analysis, and bioinformatic comparisons with existing datasets. We show CHD7 is required for correct expression of several genes established as major players in cardiac development, especially within the second heart field (SHF). We identified CHD7 binding sites in cardiac progenitor cells and found strong association with histone marks suggestive of dynamically regulated enhancers during the mesodermal to cardiac progenitor transition of mESC differentiation. Moreover, CHD7 shares a subset of its target sites with ISL1, a pioneer transcription factor in the cardiogenic gene regulatory network, including one enhancer modulating Fgf10 expression in SHF progenitor cells vs. differentiating cardiomyocytes. CONCLUSION: We show that CHD7 interacts with ISL1, binds ISL1-regulated cardiac enhancers, and modulates gene expression across the mesodermal heart fields during cardiac morphogenesis.


Asunto(s)
Síndrome CHARGE , Proteínas de Unión al ADN , Humanos , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Síndrome CHARGE/genética , Síndrome CHARGE/metabolismo , Elementos de Facilitación Genéticos , Corazón , Miocitos Cardíacos/metabolismo , Expresión Génica , Regulación del Desarrollo de la Expresión Génica , ADN Helicasas/genética , ADN Helicasas/metabolismo
3.
Kidney Int ; 101(4): 720-732, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35090878

RESUMEN

To guide the development of therapeutic interventions for acute kidney injury, elucidating the deleterious pathways of this global health problem is highly warranted. Emerging evidence has indicated a pivotal role of endothelial dysfunction in the etiology of this disease. We found that the class III semaphorin SEMA3C was ectopically upregulated with full length protein excreted into the blood and truncated protein secreted into the urine upon kidney injury and hypothesized a role for SEAM3C in acute kidney injury. Sema3c was genetically abrogated during acute kidney injury and subsequent kidney morphological and functional defects in two well-characterized models of acute kidney injury; warm ischemia/reperfusion and folic acid injection were analyzed. Employing a beta actin-dependent, inducible knockout of Sema3c, we demonstrate that in acute kidney injury SEMA3C promotes interstitial edema, leucocyte infiltration and tubular injury. Additionally, intravital microscopy combined with Evans Blue dye extravasation and primary culture of magnetically sorted peritubular endothelial cells identified a novel role for SEMA3C in promoting vascular permeability. Thus, our study points to microvascular permeability as an important driver of injury in acute kidney injury, and to SEMA3C as a novel permeability factor and potential target for therapeutic intervention.


Asunto(s)
Lesión Renal Aguda , Daño por Reperfusión , Semaforinas , Lesión Renal Aguda/genética , Lesión Renal Aguda/prevención & control , Animales , Permeabilidad Capilar , Células Endoteliales/metabolismo , Femenino , Humanos , Riñón/metabolismo , Masculino , Ratones , Daño por Reperfusión/complicaciones , Daño por Reperfusión/genética , Daño por Reperfusión/prevención & control , Semaforinas/genética , Semaforinas/metabolismo
4.
Cell Rep ; 36(8): 109610, 2021 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34433040

RESUMEN

Cxcl12-null embryos have dysplastic, misaligned, and hyperplastic semilunar valves (SLVs). In this study, we show that CXCL12 signaling via its receptor CXCR4 fulfills distinct roles at different stages of SLV development, acting initially as a guidance cue to pattern cellular distribution within the valve primordia during the endocardial-to-mesenchymal transition (endoMT) phase and later regulating mesenchymal cell proliferation during SLV remodeling. Transient, anteriorly localized puncta of internalized CXCR4 are observed in cells undergoing endoMT. In vitro, CXCR4+ cell orientation in response to CXCL12 requires phosphatidylinositol 3-kinase (PI3K) signaling and is inhibited by suppression of endocytosis. This dynamic intracellular localization of CXCR4 during SLV development is related to CXCL12 availability, potentially enabling activation of divergent downstream signaling pathways at key developmental stages. Importantly, Cxcr7-/- mutants display evidence of excessive CXCL12 signaling, indicating a likely role for atypical chemokine receptor CXCR7 in regulating ligand bioavailability and thus CXCR4 signaling output during SLV morphogenesis.


Asunto(s)
Quimiocina CXCL12/metabolismo , Morfogénesis/fisiología , Organogénesis/fisiología , Transducción de Señal/fisiología , Animales , Movimiento Celular/fisiología , Proliferación Celular/fisiología , Ratones Endogámicos C57BL , Fosfatidilinositol 3-Quinasas/metabolismo , Receptores CXCR/deficiencia , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Transducción de Señal/genética
5.
Angiogenesis ; 24(2): 271-288, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33825109

RESUMEN

Lymphatic vessels have critical roles in both health and disease and their study is a rapidly evolving area of vascular biology. The consensus on how the first lymphatic vessels arise in the developing embryo has recently shifted. Originally, they were thought to solely derive by sprouting from veins. Since then, several studies have uncovered novel cellular mechanisms and a diversity of contributing cell lineages in the formation of organ lymphatic vasculature. Here, we review the key mechanisms and cell lineages contributing to lymphatic development, discuss the advantages and limitations of experimental techniques used for their study and highlight remaining knowledge gaps that require urgent attention. Emerging technologies should accelerate our understanding of how lymphatic vessels develop normally and how they contribute to disease.


Asunto(s)
Linaje de la Célula , Células Endoteliales/metabolismo , Linfangiogénesis , Vasos Linfáticos/embriología , Animales , Humanos
6.
Methods Mol Biol ; 2067: 103-126, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31701448

RESUMEN

Microscopic and macroscopic evaluation of biological tissues in three dimensions is becoming increasingly popular. This trend is coincident with the emergence of numerous tissue clearing strategies, and advancements in confocal and two-photon microscopy, enabling the study of intact organs and systems down to cellular and sub-cellular resolution. In this chapter, we describe a wholemount immunofluorescence technique for labeling structures in renal tissue. This technique combined with solvent-based tissue clearing and confocal imaging, with or without two-photon excitation, provides greater structural information than traditional sectioning and staining alone. Given the addition of paraffin embedding to our method, this hybrid protocol offers a powerful approach to combine confocal or two-photon findings with histological and further immunofluorescent analysis within the same tissue.


Asunto(s)
Técnicas de Preparación Histocitológica/métodos , Imagenología Tridimensional/métodos , Riñón/diagnóstico por imagen , Microscopía de Fluorescencia por Excitación Multifotónica/métodos , Animales , Humanos , Imagenología Tridimensional/instrumentación , Riñón/patología , Ratones , Microscopía Confocal/instrumentación , Microscopía Confocal/métodos , Microscopía de Fluorescencia por Excitación Multifotónica/instrumentación , Programas Informáticos , Solventes/química , Coloración y Etiquetado/métodos , Flujo de Trabajo
7.
Elife ; 82019 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-31808745

RESUMEN

Heterogeneity of lymphatic vessels during embryogenesis is critical for organ-specific lymphatic function. Little is known about lymphatics in the developing kidney, despite their established roles in pathology of the mature organ. We performed three-dimensional imaging to characterize lymphatic vessel formation in the mammalian embryonic kidney at single-cell resolution. In mouse, we visually and quantitatively assessed the development of kidney lymphatic vessels, remodeling from a ring-like anastomosis under the nascent renal pelvis; a site of VEGF-C expression, to form a patent vascular plexus. We identified a heterogenous population of lymphatic endothelial cell clusters in mouse and human embryonic kidneys. Exogenous VEGF-C expanded the lymphatic population in explanted mouse embryonic kidneys. Finally, we characterized complex kidney lymphatic abnormalities in a genetic mouse model of polycystic kidney disease. Our study provides novel insights into the development of kidney lymphatic vasculature; a system which likely has fundamental roles in renal development, physiology and disease.


Asunto(s)
Riñón/metabolismo , Linfangiogénesis/genética , Vasos Linfáticos/metabolismo , Enfermedades Renales Poliquísticas/genética , Animales , Regulación del Desarrollo de la Expresión Génica , Heterogeneidad Genética , Humanos , Riñón/embriología , Cinética , Vasos Linfáticos/embriología , Mamíferos/embriología , Mamíferos/genética , Mamíferos/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Enfermedades Renales Poliquísticas/embriología , Enfermedades Renales Poliquísticas/metabolismo , Análisis Espacio-Temporal , Factor C de Crecimiento Endotelial Vascular/genética , Factor C de Crecimiento Endotelial Vascular/metabolismo
8.
Mol Syndromol ; 10(1-2): 98-114, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30976283

RESUMEN

Neural crest stem/progenitor cells (NCSCs) populate a variety of tissues, and their dysregulation is implicated in several human diseases including craniosynostosis and neuroblastoma. We hypothesised that small molecules that inhibit NCSC induction or differentiation may represent potential therapeutically relevant drugs in these disorders. We screened 640 FDA-approved compounds currently in clinical use for other conditions to identify those which disrupt development of NCSC-derived skeletal elements that form the zebrafish jaw. In the primary screen, we used heterozygous transgenic sox10:gfp zebrafish to directly visualise NCSC-derived jaw cartilage. We noted partial toxicity of this transgene in relation to jaw patterning, suggesting that our primary screen was sensitised for NCSC defects, and we confirmed 10 novel, 4 previously reported, and 2 functional analogue drug hits in wild-type embryos. Of these drugs, 9/14 and 7/14, respectively, are known to target pathways implicated in osteoarthritis pathogenesis or to cause reduced bone mineral density/increased fracture risk as side effects in patients treated for other conditions, suggesting that our screen enriched for pathways targeting skeletal tissue homeostasis. We selected one drug that inhibited NCSC induction and one drug that inhibits bone mineralisation for further detailed analyses which reflect our initial hypotheses. These drugs were leflunomide and cyclosporin A, respectively, and their functional analogues, teriflunomide and FK506 (tacrolimus). We identified their critical developmental windows of activity, showing that the severity of defects observed related to the timing, duration, and dose of treatment. While leflunomide has previously been shown to inhibit NCSC induction, we demonstrate additional later roles in cartilage remodelling. Both drugs altered expression of extracellular matrix metalloproteinases. As proof-of-concept, we also tested drug treatment of disease-relevant mammalian cells. While leflunomide treatment inhibited the viability of several human NCSC-derived neuroblastoma cell lines coincident with altered expression of genes involved in ribosome biogenesis and transcription, FK506 enhanced murine calvarial osteoblast differentiation and prevented fusion of the coronal suture in calvarial explants taken from Crouzon syndrome mice.

9.
Am J Med Genet A ; 176(10): 2070-2081, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30380194

RESUMEN

The 22q11.2 deletion syndrome (22q11.2DS) is a congenital malformation and neuropsychiatric disorder caused by meiotic chromosome rearrangements. One of the goals of this review is to summarize the current state of basic research studies of 22q11.2DS. It highlights efforts to understand the mechanisms responsible for the 22q11.2 deletion that occurs in meiosis. This mechanism involves the four sets of low copy repeats (LCR22) that are dispersed in the 22q11.2 region and the deletion is mediated by nonallelic homologous recombination events. This review also highlights selected genes mapping to the 22q11.2 region that may contribute to the typical clinical findings associated with the disorder and explain that mutations in genes on the remaining allele can uncover rare recessive conditions. Another important aspect of 22q11.2DS is the existence of phenotypic heterogeneity. While some patients are mildly affected, others have severe medical, cognitive, and/or psychiatric challenges. Variability may be due in part to the presence of genetic modifiers. This review discusses current genome-wide efforts to identify such modifiers that could shed light on molecular pathways required for normal human development, cognition or behavior.


Asunto(s)
Anomalías Múltiples/genética , Cromosomas Humanos Par 22 , Síndrome de DiGeorge/genética , Mutación , Deleción Cromosómica , Síndrome de DiGeorge/etiología , Genes Recesivos , Pruebas Genéticas , Humanos , Meiosis
10.
PLoS One ; 13(11): e0207251, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30408103

RESUMEN

The CXCL12-CXCR4 pathway has crucial roles in stem cell homing and maintenance, neuronal guidance, cancer progression, inflammation, remote-conditioning, cell migration and development. Recently, work in chick suggested that signalling via CXCR4 in neural crest cells (NCCs) has a role in the 22q11.2 deletion syndrome (22q11.2DS), a disorder where haploinsufficiency of the transcription factor TBX1 is responsible for the major structural defects. We tested this idea in mouse models. Our analysis of genes with altered expression in Tbx1 mutant mouse models showed down-regulation of Cxcl12 in pharyngeal surface ectoderm and rostral mesoderm, both tissues with the potential to signal to migrating NCCs. Conditional mutagenesis of Tbx1 in the pharyngeal surface ectoderm is associated with hypo/aplasia of the 4th pharyngeal arch artery (PAA) and interruption of the aortic arch type B (IAA-B), the cardiovascular defect most typical of 22q11.2DS. We therefore analysed constitutive mouse mutants of the ligand (CXCL12) and receptor (CXCR4) components of the pathway, in addition to ectodermal conditionals of Cxcl12 and NCC conditionals of Cxcr4. However, none of these typical 22q11.2DS features were detected in constitutively or conditionally mutant embryos. Instead, duplicated carotid arteries were observed, a phenotype recapitulated in Tie-2Cre (endothelial) conditional knock outs of Cxcr4. Previous studies have demonstrated genetic interaction between signalling pathways and Tbx1 haploinsufficiency e.g. FGF, WNT, SMAD-dependent. We therefore tested for possible epistasis between Tbx1 and the CXCL12 signalling axis by examining Tbx1 and Cxcl12 double heterozygotes as well as Tbx1/Cxcl12/Cxcr4 triple heterozygotes, but failed to identify any exacerbation of the Tbx1 haploinsufficient arch artery phenotype. We conclude that CXCL12 signalling via NCC/CXCR4 has no major role in the genesis of the Tbx1 loss of function phenotype. Instead, the pathway has a distinct effect on remodelling of head vessels and interventricular septation mediated via CXCL12 signalling from the pharyngeal surface ectoderm and second heart field to endothelial cells.


Asunto(s)
Sistema Cardiovascular/crecimiento & desarrollo , Sistema Cardiovascular/metabolismo , Quimiocina CXCL12/deficiencia , Receptores CXCR4/deficiencia , Proteínas de Dominio T Box/deficiencia , Animales , Aorta Torácica/anomalías , Aorta Torácica/embriología , Aorta Torácica/metabolismo , Anomalías Cardiovasculares/embriología , Anomalías Cardiovasculares/genética , Anomalías Cardiovasculares/metabolismo , Sistema Cardiovascular/embriología , Quimiocina CXCL12/genética , Síndrome de DiGeorge/enzimología , Síndrome de DiGeorge/genética , Síndrome de DiGeorge/metabolismo , Modelos Animales de Enfermedad , Epistasis Genética , Femenino , Haploinsuficiencia , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación , Cresta Neural/metabolismo , Embarazo , Receptores CXCR4/genética , Transducción de Señal/genética , Proteínas de Dominio T Box/genética
11.
J Cardiovasc Dev Dis ; 5(4)2018 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-30249045

RESUMEN

Haploinsufficiency of the T-box transcription factor TBX1 is responsible for many features of 22q11.2 deletion syndrome. Tbx1 is expressed dynamically in the pharyngeal apparatus during mouse development and Tbx1 homozygous mutants display numerous severe defects including abnormal cranial ganglion formation and neural crest cell defects. These abnormalities prompted us to investigate whether parasympathetic (vagal) innervation of the heart was affected in Tbx1 mutant embryos. In this report, we used an allelic series of Tbx1 mouse mutants, embryo tissue explants and cardiac electrophysiology to characterise, in detail, the function of Tbx1 in vagal innervation of the heart. We found that total nerve branch length was significantly reduced in Tbx1+/- and Tbx1neo2/- mutant hearts expressing 50% and 15% levels of Tbx1. We also found that neural crest cells migrated normally to the heart of Tbx1+/-, but not in Tbx1neo2 mutant embryos. In addition, we showed that cranial ganglia IXth and Xth were fused in Tbx1neo2/- but neuronal differentiation appeared intact. Finally, we used telemetry to monitor heart response to carbachol, a cholinergic receptor agonist, and found that heart rate recovered more quickly in Tbx1+/- animals versus controls. We speculate that this condition of decreased parasympathetic drive could result in a pro-arrhythmic substrate in some 22q11.2DS patients.

12.
Mol Biol Rep ; 45(5): 1001-1011, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30030774

RESUMEN

HIRA is a histone chaperone known to modulate gene expression through the deposition of H3.3. Conditional knockout of Hira in embryonic mouse hearts leads to cardiac septal defects. Loss of function mutation in HIRA, together with other chromatin modifiers, was found in patients with congenital heart diseases. However, the effects of HIRA on gene expression at earlier stages of cardiogenic mesoderm differentiation have not yet been studied. Differentiation of mouse embryonic stem cells (mESCs) towards cardiomyocytes mimics some of these early events and is an accepted model of these early stages. We performed RNA-Seq and H3.3-HA ChIP-seq on both WT and Hira-null mESCs and early cardiomyocyte progenitors of both genotypes. Analysis of RNA-seq data showed differential down regulation of cardiovascular development-related genes in Hira-null cardiomyocytes compared to WT cardiomyocytes. We found HIRA-dependent H3.3 deposition at these genes. In particular, we observed that HIRA influenced directly the expression of the transcription factors Gata6, Meis1 and Tbx2, essential for cardiac septation, through H3.3 deposition. We therefore identified new direct targets of HIRA during cardiac differentiation.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Chaperonas de Histonas/metabolismo , Células Madre Embrionarias de Ratones/citología , Miocitos Cardíacos/citología , Análisis de Secuencia de ARN/métodos , Factores de Transcripción/genética , Animales , Diferenciación Celular , Línea Celular , Regulación hacia Abajo , Elementos de Facilitación Genéticos , Factor de Transcripción GATA6/genética , Defectos de los Tabiques Cardíacos/embriología , Defectos de los Tabiques Cardíacos/metabolismo , Histonas/metabolismo , Mutación con Pérdida de Función , Ratones , Células Madre Embrionarias de Ratones/metabolismo , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide/genética , Miocitos Cardíacos/metabolismo , Proteínas de Dominio T Box/genética , Factores de Transcripción/metabolismo
13.
Kidney Int ; 93(4): 903-920, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29398135

RESUMEN

The Wilms' tumor suppressor gene, WT1, encodes a zinc finger protein that regulates podocyte development and is highly expressed in mature podocytes. Mutations in the WT1 gene are associated with the development of renal failure due to the formation of scar tissue within glomeruli, the mechanisms of which are poorly understood. Here, we used a tamoxifen-based CRE-LoxP system to induce deletion of Wt1 in adult mice to investigate the mechanisms underlying evolution of glomerulosclerosis. Podocyte apoptosis was evident as early as the fourth day post-induction and increased during disease progression, supporting a role for Wt1 in mature podocyte survival. Podocyte Notch activation was evident at disease onset with upregulation of Notch1 and its transcriptional targets, including Nrarp. There was repression of podocyte FoxC2 and upregulation of Hey2 supporting a role for a Wt1/FoxC2/Notch transcriptional network in mature podocyte injury. The expression of cleaved Notch1 and HES1 proteins in podocytes of mutant mice was confirmed in early disease. Furthermore, induction of podocyte HES1 expression was associated with upregulation of genes implicated in epithelial mesenchymal transition, thereby suggesting that HES1 mediates podocyte EMT. Lastly, early pharmacological inhibition of Notch signaling ameliorated glomerular scarring and albuminuria. Thus, loss of Wt1 in mature podocytes modulates podocyte Notch activation, which could mediate early events in WT1-related glomerulosclerosis.


Asunto(s)
Glomerulonefritis/metabolismo , Podocitos/metabolismo , Receptor Notch1/metabolismo , Proteínas Represoras/metabolismo , Albuminuria/genética , Albuminuria/metabolismo , Animales , Apoptosis , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Células Cultivadas , Modelos Animales de Enfermedad , Transición Epitelial-Mesenquimal , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Regulación de la Expresión Génica , Glomerulonefritis/genética , Glomerulonefritis/patología , Péptidos y Proteínas de Señalización Intracelular , Ratones Endogámicos C57BL , Ratones Noqueados , Podocitos/patología , Proteínas/genética , Proteínas/metabolismo , Receptor Notch1/genética , Proteínas Represoras/deficiencia , Proteínas Represoras/genética , Transducción de Señal , Transcripción Genética , Proteínas WT1
14.
J Mol Cell Cardiol ; 114: 29-37, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29061339

RESUMEN

Physiological changes during embryonic development are associated with changes in the isoform expression of both myocyte sarcomeric proteins and of erythrocyte haemoglobins. Cell type-specific isoform expression of these genes also occurs. Although these changes appear to be coordinated, it is unclear how changes in these disparate cell types may be linked. The transcription factor Hic2 is required for normal cardiac development and the mutant is embryonic lethal. Hic2 embryos exhibit precocious expression of the definitive-lineage haemoglobin Hbb-bt in circulating primitive erythrocytes and of foetal isoforms of cardiomyocyte genes (creatine kinase, Ckm, and eukaryotic elongation factor Eef1a2) as well as ectopic cardiac expression of fast-twitch skeletal muscle troponin isoforms. We propose that HIC2 regulates a switching event within both the contractile machinery of cardiomyocytes and the oxygen carrying systems during the developmental period where demands on cardiac loading change rapidly.


Asunto(s)
Sistema Cardiovascular/embriología , Sistema Cardiovascular/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Isoformas de Proteínas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Pérdida del Embrión/patología , Eritrocitos/metabolismo , Feto/metabolismo , Regulación del Desarrollo de la Expresión Génica , Hemoglobinas/metabolismo , Factores de Transcripción de Tipo Kruppel/sangre , Ratones , Mutación/genética , Miocitos Cardíacos/metabolismo , Especificidad de Órganos , Factores de Tiempo , Troponina I/metabolismo , Proteínas Supresoras de Tumor/sangre
15.
Hum Mol Genet ; 27(3): 529-545, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29228333

RESUMEN

DNAAF1 (LRRC50) is a cytoplasmic protein required for dynein heavy chain assembly and cilia motility, and DNAAF1 mutations cause primary ciliary dyskinesia (PCD; MIM 613193). We describe four families with DNAAF1 mutations and complex congenital heart disease (CHD). In three families, all affected individuals have typical PCD phenotypes. However, an additional family demonstrates isolated CHD (heterotaxy) in two affected siblings, but no clinical evidence of PCD. We identified a homozygous DNAAF1 missense mutation, p.Leu191Phe, as causative for heterotaxy in this family. Genetic complementation in dnaaf1-null zebrafish embryos demonstrated the rescue of normal heart looping with wild-type human DNAAF1, but not the p.Leu191Phe variant, supporting the conserved pathogenicity of this DNAAF1 missense mutation. This observation points to a phenotypic continuum between CHD and PCD, providing new insights into the pathogenesis of isolated CHD. In further investigations of the function of DNAAF1 in dynein arm assembly, we identified interactions with members of a putative dynein arm assembly complex. These include the ciliary intraflagellar transport protein IFT88 and the AAA+ (ATPases Associated with various cellular Activities) family proteins RUVBL1 (Pontin) and RUVBL2 (Reptin). Co-localization studies support these findings, with the loss of RUVBL1 perturbing the co-localization of DNAAF1 with IFT88. We show that RUVBL1 orthologues have an asymmetric left-sided distribution at both the mouse embryonic node and the Kupffer's vesicle in zebrafish embryos, with the latter asymmetry dependent on DNAAF1. These results suggest that DNAAF1-RUVBL1 biochemical and genetic interactions have a novel functional role in symmetry breaking and cardiac development.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Proteínas Portadoras/metabolismo , Cilios/metabolismo , ADN Helicasas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/genética , Animales , Proteínas Portadoras/genética , Cilios/fisiología , ADN Helicasas/genética , Femenino , Genotipo , Células HEK293 , Humanos , Masculino , Proteínas Asociadas a Microtúbulos/genética , Mutación Missense/genética , Linaje , Fenotipo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Secuenciación del Exoma/métodos , Pez Cebra , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
16.
Am J Med Genet C Semin Med Genet ; 175(4): 487-495, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29088513

RESUMEN

Heart defects caused by loss-of-function mutations in CHD7 are a frequent cause of morbidity and mortality in CHARGE syndrome. Here we review the clinical and molecular aspects of CHD7 that are related to the cardiovascular manifestations of the syndrome. The types of heart defects found in patients with CHD7 mutations are variable, with an overrepresentation of atrioventricular septal defect and outflow tract defect including aortic arch anomalies compared to nonsyndromic heart defects. Chd7 haploinsufficiency in mouse is a good model for studying the heart effects seen in CHARGE syndrome, and mouse models reveal a role for Chd7 in multiple lineages during heart development. Formation of the great vessels requires Chd7 expression in the pharyngeal surface ectoderm, and this expression likely has an non-autonomous effect on neural crest cells. In the cardiogenic mesoderm, Chd7 is required for atrioventricular cushion development and septation of the outflow tract. Emerging knowledge about the function of CHD7 in the heart indicates that it may act in concert with transcription factors such as TBX1 and SMADs to regulate genes such as p53 and the cardiac transcription factor NKX2.5.


Asunto(s)
ADN Helicasas/genética , Proteínas de Unión al ADN/genética , Estudios de Asociación Genética , Cardiopatías Congénitas/diagnóstico , Cardiopatías Congénitas/genética , Mutación , Fenotipo , Animales , Proteínas Morfogenéticas Óseas/metabolismo , Síndrome CHARGE/diagnóstico , Síndrome CHARGE/genética , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Modelos Animales de Enfermedad , Humanos , Ratones , Especificidad de Órganos/genética , Organogénesis/genética , Transducción de Señal
17.
PLoS One ; 11(8): e0161096, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27518902

RESUMEN

Chromatin remodelling is essential for cardiac development. Interestingly, the role of histone chaperones has not been investigated in this regard. HIRA is a member of the HUCA (HIRA/UBN1/CABIN1/ASF1a) complex that deposits the variant histone H3.3 on chromatin independently of replication. Lack of HIRA has general effects on chromatin and gene expression dynamics in embryonic stem cells and mouse oocytes. Here we describe the conditional ablation of Hira in the cardiogenic mesoderm of mice. We observed surface oedema, ventricular and atrial septal defects and embryonic lethality. We identified dysregulation of a subset of cardiac genes, notably upregulation of troponins Tnni2 and Tnnt3, involved in cardiac contractility and decreased expression of Epha3, a gene necessary for the fusion of the muscular ventricular septum and the atrioventricular cushions. We found that HIRA binds GAGA rich DNA loci in the embryonic heart, and in particular a previously described enhancer of Tnni2/Tnnt3 (TTe) bound by the transcription factor NKX2.5. HIRA-dependent H3.3 enrichment was observed at the TTe in embryonic stem cells (ESC) differentiated toward cardiomyocytes in vitro. Thus, we show here that HIRA has locus-specific effects on gene expression and that histone chaperone activity is vital for normal heart development, impinging on pathways regulated by an established cardiac transcription factor.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Regulación de la Expresión Génica , Corazón/embriología , Chaperonas de Histonas/fisiología , Miocitos Cardíacos/citología , Factores de Transcripción/fisiología , Troponina I/metabolismo , Troponina/metabolismo , Animales , Diferenciación Celular , Linaje de la Célula , Células Cultivadas , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Proteína Homeótica Nkx-2.5/genética , Proteína Homeótica Nkx-2.5/metabolismo , Ratones , Ratones Noqueados , Miocitos Cardíacos/metabolismo , Troponina/genética , Troponina I/genética
18.
Early Hum Dev ; 101: 39-48, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27405055

RESUMEN

BACKGROUND: In human fetuses with cardiac defects and increased nuchal translucency, abnormal ductus venosus flow velocity waveforms are observed. It is unknown whether abnormal ductus venosus flow velocity waveforms in fetuses with increased nuchal translucency are a reflection of altered cardiac function or are caused by local morphological alterations in the ductus venosus. AIM: The aim of this study was to investigate if the observed increased nuchal translucency, cardiac defects and abnormal lymphatic development in the examined mouse models are associated with local changes in ductus venosus morphology. STUDY DESIGN: Mouse embryos with anomalous lymphatic development and nuchal edema (Ccbe1(-/-) embryos), mouse embryos with cardiac defects and nuchal edema (Fkbp12(-/-), Tbx1(-/-), Chd7(fl/fl);Mesp1Cre, Jarid2(-/-NE+) embryos) and mouse embryos with cardiac defects without nuchal edema (Tbx2(-/-), Fgf10(-/-), Jarid2(-/-NE-) embryos) were examined. Embryos were analyzed from embryonic day (E) 11.5 to 15.5 using markers for endothelium, smooth muscle actin, nerve tissue and elastic fibers. RESULTS: All mutant and wild-type mouse embryos showed similar, positive endothelial and smooth muscle cell expression in the ductus venosus at E11.5-15.5. Nerve marker and elastic fiber expression were not identified in the ductus venosus in all investigated mutant and wild-type embryos. Local morphology and expression of the used markers were similar in the ductus venosus in all examined mutant and wild-type embryos. CONCLUSIONS: Cardiac defects, nuchal edema and abnormal lymphatic development are not associated with morphological changes in the ductus venosus. Ductus venosus flow velocity waveforms most probably reflect intracardiac pressure.


Asunto(s)
Edema/patología , Cardiopatías Congénitas/patología , Sistema Linfático/anomalías , Cordón Nucal/patología , Venas Umbilicales/patología , Actinas/genética , Actinas/metabolismo , Animales , Velocidad del Flujo Sanguíneo , Proteínas de Unión al Calcio/genética , Femenino , Factor 10 de Crecimiento de Fibroblastos/genética , Cardiopatías Congénitas/genética , Sistema Linfático/patología , Ratones , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Cordón Nucal/genética , Medida de Translucencia Nucal , Complejo Represivo Polycomb 2/genética , Proteínas de Dominio T Box/genética , Proteína 1A de Unión a Tacrolimus/genética , Proteínas Supresoras de Tumor/genética
20.
J Vis Exp ; (118)2016 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-28060348

RESUMEN

Whole mount visualization of the embryonic coronary plexus from which the capillary and arterial networks will form is rendered problematic using standard microscopy techniques, due to the scattering of imaging light by the thick heart tissue, as these vessels are localized deep within the walls of the developing heart. As optical clearing of tissues using organic solvents such as BABB (1 part benzyl alcohol to 2 parts benzyl benzoate) has been shown to greatly improve the optical penetration depth that can be achieved, we combined clearance of whole, PECAM1-immunostained hearts, with laser-scanning confocal microscopy, in order to obtain high-resolution images of vessels throughout the entire heart. BABB clearance of embryonic hearts takes place rapidly and also acts to preserve the fluorescent signal for several weeks; in addition, samples can be imaged multiple times without loss of signal. This straightforward method is also applicable to imaging other types of blood vessels in whole embryos.


Asunto(s)
Vasos Coronarios/diagnóstico por imagen , Corazón/diagnóstico por imagen , Corazón/embriología , Imagenología Tridimensional/métodos , Animales , Benzoatos , Alcohol Bencilo , Ratones , Microscopía Confocal , Solventes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...