Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(17)2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-36077590

RESUMEN

53BP1 protein has been isolated in-vitro as a putative p53 interactor. From the discovery of its engagement in the DNA-Damage Response (DDR), its role in sustaining the activity of the p53-regulated transcriptional program has been frequently under-evaluated, even in the case of a specific response to numerous DNA Double-Strand Breaks (DSBs), i.e., exposure to ionizing radiation. The localization of 53BP1 protein constitutes a key to decipher the network of activities exerted in response to stress. We present here an automated-microscopy for image cytometry protocol to analyze the evolution of the DDR, and to demonstrate how 53BP1 moved from damaged sites, where the well-known interaction with the DSB marker γH2A.X takes place, to nucleoplasm, interacting with p53, and enhancing the transcriptional regulation of the guardian of the genome protein. Molecular interactions have been quantitatively described and spatiotemporally localized at the highest spatial resolution by a simultaneous analysis of the impairment of the cell-cycle progression. Thanks to the high statistical sampling of the presented protocol, we provide a detailed quantitative description of the molecular events following the DSBs formation. Single-Molecule Localization Microscopy (SMLM) Analysis finally confirmed the p53-53BP1 interaction on the tens of nanometers scale during the distinct phases of the response.


Asunto(s)
Roturas del ADN de Doble Cadena , Proteína p53 Supresora de Tumor , ADN/metabolismo , Daño del ADN , Reparación del ADN , Citometría de Imagen , Proteína p53 Supresora de Tumor/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo
2.
Nanomaterials (Basel) ; 12(4)2022 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-35215014

RESUMEN

Super Resolution Microscopy revolutionized the approach to the study of molecular interactions by providing new quantitative tools to describe the scale below 100 nanometers. Single Molecule Localization Microscopy (SMLM) reaches a spatial resolution less than 50 nm with a precision in calculating molecule coordinates between 10 and 20 nanometers. However new procedures are required to analyze data from the list of molecular coordinates created by SMLM. We propose new tools based on Image Cross Correlation Spectroscopy (ICCS) to quantify the colocalization of fluorescent signals at single molecule level. These analysis procedures have been inserted into an experimental pipeline to optimize the produced results. We show that Fluorescent NanoDiamonds targeted to an intracellular compartment can be employed (i) to correct spatial drift to maximize the localization precision and (ii) to register confocal and SMLM images in correlative multiresolution, multimodal imaging. We validated the ICCS based approach on defined biological control samples and showed its ability to quantitatively map area of interactions inside the cell. The produced results show that the ICCS analysis is an efficient tool to measure relative spatial distribution of different molecular species at the nanoscale.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...