RESUMEN
Neurotransmitters are released at synapses by synaptic vesicles (SVs), which originate from SV precursors (SVPs) that have traveled along the axon. Because each synapse maintains a pool of SVs, only a small fraction of which are released, it has been thought that axonal transport of SVPs does not affect synaptic function. Here, studying the corticostriatal network both in microfluidic devices and in mice, we find that phosphorylation of the Huntingtin protein (HTT) increases axonal transport of SVPs and synaptic glutamate release by recruiting the kinesin motor KIF1A. In mice, constitutive HTT phosphorylation causes SV over-accumulation at synapses, increases the probability of SV release, and impairs motor skill learning on the rotating rod. Silencing KIF1A in these mice restored SV transport and motor skill learning to wild-type levels. Axonal SVP transport within the corticostriatal network thus influences synaptic plasticity and motor skill learning.
RESUMEN
Huntington disease (HD) is a neurodegenerative disorder caused by polyglutamine-encoding CAG repeat expansion in the huntingtin (HTT) gene. HTT is involved in the axonal transport of vesicles containing brain-derived neurotrophic factor (BDNF). In HD, diminished BDNF transport leads to reduced BDNF delivery to the striatum, contributing to striatal and cortical neuronal death. Pridopidine is a selective and potent sigma-1 receptor (S1R) agonist currently in clinical development for HD. The S1R is located at the endoplasmic reticulum (ER)-mitochondria interface, where it regulates key cellular pathways commonly impaired in neurodegenerative diseases. We used a microfluidic device that reconstitutes the corticostriatal network, allowing the investigation of presynaptic dynamics, synaptic morphology and transmission, and postsynaptic signaling. Culturing primary neurons from the HD mouse model HdhCAG140/+ provides a "disease-on-a-chip" platform ideal for investigating pathogenic mechanisms and drug activity. Pridopidine rescued the trafficking of BDNF and TrkB resulting in an increased neurotrophin signaling at the synapse. This increased the capacity of HD neurons to release glutamate and restored homeostasis at the corticostriatal synapse. These data suggest that pridopidine enhances the availability of corticostriatal BDNF via S1R activation, leading to neuroprotective effects.
Asunto(s)
Enfermedad de Huntington , Fármacos Neuroprotectores , Animales , Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Modelos Animales de Enfermedad , Glutamatos/farmacología , Glutamatos/uso terapéutico , Homeostasis , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/genética , Dispositivos Laboratorio en un Chip , Ratones , Fármacos Neuroprotectores/farmacología , Piperidinas , Sinapsis/metabolismoRESUMEN
When a neurotrophin binds at the presynapse, it sends survival signals all the way to the nucleus on signaling endosomes. These endosomes fuel their own journey with on-board glycolysisbut how is that journey initiated and maintained? Using microfluidic devices and mice, we find that the calcium released upon brain-derived neurotrophic factor (BDNF) binding to its receptor, tropomyosin receptor kinase B (TrkB), is sensed by calcineurin on the cytosolic face of the endosome. Calcineurin dephosphorylates huntingtin, the BDNF scaffold, which sets the endosome moving in a retrograde direction. In an in vitro reconstituted microtubule transport system, controlled calcium uncaging prompts purified vesicles to move to the microtubule minus end. We observed similar retrograde waves of TrkA- and epidermal growth factor receptor (EGFR)-bearing endosomes. Signaling endosomes in neurons thus carry not only their own fuel, but their own navigational system.
RESUMEN
Huntington disease (HD) damages the corticostriatal circuitry in large part by impairing transport of brain-derived neurotrophic factor (BDNF). We hypothesized that improving vesicular transport of BDNF could slow or prevent disease progression. We therefore performed selective proteomic analysis of vesicles transported within corticostriatal projecting neurons followed by in silico screening and identified palmitoylation as a pathway that could restore defective huntingtin-dependent trafficking. Using a synchronized trafficking assay and an HD network-on-a-chip, we found that increasing brain palmitoylation via ML348, which inhibits the palmitate-removing enzyme acyl-protein thioesterase 1 (APT1), restores axonal transport, synapse homeostasis, and survival signaling to wild-type levels without toxicity. In human HD induced pluripotent stem cell-derived cortical neurons, ML348 increased BDNF trafficking. In HD knock-in mice, it efficiently crossed the blood-brain barrier to restore palmitoylation levels and reverse neuropathology, locomotor deficits, and anxio-depressive behaviors. APT1 and its inhibitor ML348 thus hold therapeutic interest for HD.
Asunto(s)
Enfermedad de Huntington , Animales , Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/patología , Lipoilación , Ratones , ProteómicaRESUMEN
The huntingtin (HTT) protein transports various organelles, including vesicles containing neurotrophic factors, from embryonic development throughout life. To better understand how HTT mediates axonal transport and why this function is disrupted in Huntington's disease (HD), we study vesicle-associated HTT and find that it is dimethylated at a highly conserved arginine residue (R118) by the protein arginine methyltransferase 6 (PRMT6). Without R118 methylation, HTT associates less with vesicles, anterograde trafficking is diminished, and neuronal death ensues-very similar to what occurs in HD. Inhibiting PRMT6 in HD cells and neurons exacerbates mutant HTT (mHTT) toxicity and impairs axonal trafficking, whereas overexpressing PRMT6 restores axonal transport and neuronal viability, except in the presence of a methylation-defective variant of mHTT. In HD flies, overexpressing PRMT6 rescues axonal defects and eclosion. Arginine methylation thus regulates HTT-mediated vesicular transport along the axon, and increasing HTT methylation could be of therapeutic interest for HD.
Asunto(s)
Transporte Axonal/genética , Epigénesis Genética , Proteína Huntingtina/genética , Enfermedad de Huntington/genética , Proteínas Nucleares/genética , Proteína-Arginina N-Metiltransferasas/genética , Vesículas Transportadoras/metabolismo , Secuencia de Aminoácidos , Animales , Arginina/metabolismo , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Muerte Celular , Modelos Animales de Enfermedad , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Humanos , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/patología , Metilación , Ratones , Ratones Transgénicos , Unión Neuromuscular/genética , Unión Neuromuscular/metabolismo , Unión Neuromuscular/patología , Neuronas/metabolismo , Neuronas/patología , Proteínas Nucleares/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteína-Arginina N-Metiltransferasas/metabolismo , Vesículas Transportadoras/genética , Vesículas Transportadoras/patologíaRESUMEN
Polyglutamine (polyQ) expansions in the androgen receptor (AR) gene cause spinal and bulbar muscular atrophy (SBMA), a neuromuscular disease characterized by lower motor neuron (MN) loss and skeletal muscle atrophy, with an unknown mechanism. We generated new mouse models of SBMA for constitutive and inducible expression of mutant AR and performed biochemical, histological and functional analyses of phenotype. We show that polyQ-expanded AR causes motor dysfunction, premature death, IIb-to-IIa/IIx fiber-type change, glycolytic-to-oxidative fiber-type switching, upregulation of atrogenes and autophagy genes and mitochondrial dysfunction in skeletal muscle, together with signs of muscle denervation at late stage of disease. PolyQ expansions in the AR resulted in nuclear enrichment. Within the nucleus, mutant AR formed 2% sodium dodecyl sulfate (SDS)-resistant aggregates and inclusion bodies in myofibers, but not spinal cord and brainstem, in a process exacerbated by age and sex. Finally, we found that two-week induction of expression of polyQ-expanded AR in adult mice was sufficient to cause premature death, body weight loss and muscle atrophy, but not aggregation, metabolic alterations, motor coordination and fiber-type switch, indicating that expression of the disease protein in the adulthood is sufficient to recapitulate several, but not all SBMA manifestations in mice. These results imply that chronic expression of polyQ-expanded AR, i.e. during development and prepuberty, is key to induce the full SBMA muscle pathology observed in patients. Our data support a model whereby chronic expression of polyQ-expanded AR triggers muscle atrophy through toxic (neomorphic) gain of function mechanisms distinct from normal (hypermorphic) gain of function mechanisms.
Asunto(s)
Envejecimiento/metabolismo , Homeostasis , Músculo Esquelético/metabolismo , Péptidos/metabolismo , Receptores Androgénicos/metabolismo , Caracteres Sexuales , Animales , Agregación Celular , Desnervación , Cuerpos de Inclusión/metabolismo , Ratones Transgénicos , Mitocondrias/patología , Actividad Motora , Músculo Esquelético/inervación , Músculo Esquelético/patología , Músculo Esquelético/fisiopatología , Atrofia Muscular/patología , Atrofia Muscular/fisiopatología , Atrofia Muscular Espinal/patología , Unión Neuromuscular/patologíaRESUMEN
Mutations in the X-linked MECP2 gene are responsible for Rett syndrome (RTT), a severe neurological disorder for which there is no treatment. Several studies have linked the loss of MeCP2 function to alterations of brain-derived neurotrophic factor (BDNF) levels, but non-specific overexpression of BDNF only partially improves the phenotype of Mecp2-deficient mice. We and others have previously shown that huntingtin (HTT) scaffolds molecular motor complexes, transports BDNF-containing vesicles, and is under-expressed in Mecp2 knockout brains. Here, we demonstrate that promoting HTT phosphorylation at Ser421, either by a phospho-mimetic mutation or inhibition of the phosphatase calcineurin, restores endogenous BDNF axonal transport in vitro in the corticostriatal pathway, increases striatal BDNF availability and synaptic connectivity in vivo, and improves the phenotype and the survival of Mecp2 knockout mice-even though treatments were initiated only after the mice had already developed symptoms. Stimulation of endogenous cellular pathways may thus be a promising approach for the treatment of RTT patients.
Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Proteína Huntingtina/química , Proteína 2 de Unión a Metil-CpG , Síndrome de Rett/genética , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Modelos Animales de Enfermedad , Femenino , Homeostasis , Masculino , Proteína 2 de Unión a Metil-CpG/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo , FosforilaciónRESUMEN
Microtubules are polymerized dimers of α- and ß-tubulin that underlie a broad range of cellular activities. Acetylation of α-tubulin by the acetyltransferase ATAT1 modulates microtubule dynamics and functions in neurons. However, it remains unclear how this enzyme acetylates microtubules over long distances in axons. Here, we show that loss of ATAT1 impairs axonal transport in neurons in vivo, and cell-free motility assays confirm a requirement of α-tubulin acetylation for proper bidirectional vesicular transport. Moreover, we demonstrate that the main cellular pool of ATAT1 is transported at the cytosolic side of neuronal vesicles that are moving along axons. Together, our data suggest that axonal transport of ATAT1-enriched vesicles is the predominant driver of α-tubulin acetylation in axons.
Asunto(s)
Acetiltransferasas/metabolismo , Transporte Axonal/fisiología , Proteínas de Microtúbulos/metabolismo , Microtúbulos/metabolismo , Acetilación , Acetiltransferasas/genética , Animales , Drosophila melanogaster/metabolismo , Femenino , Células HEK293 , Células HeLa , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Larva/fisiología , Locomoción , Masculino , Ratones , Ratones Noqueados , Proteínas de Microtúbulos/genética , Neuronas/metabolismo , Tubulina (Proteína)/metabolismoRESUMEN
Studying intracellular dynamics in neurons is crucial to better understand how brain circuits communicate and adapt to environmental changes. In neurons, axonal secretory vesicles underlie various functions from growth during development to plasticity in the mature brain. Similarly, transport of mitochondria, the power plant of the cell, regulates both axonal development and synaptic homeostasis. However, because of their submicrometric size and rapid velocities, studying the kinetics of these organelles in projecting axons in vivo is technically challenging. In parallel, primary neuronal cultures are adapted to study axonal transport but they lack the physiological organization of neuronal networks, which in turn may bias observations. We previously developed a microfluidic platform to reconstruct a physiologically-relevant and functional corticostriatal network in vitro that is compatible with high-resolution videorecording of axonal trafficking. Here, using this system we report progressive changes in axonal transport kinetics of both dense core vesicles and mitochondria that correlate with network development and maturation. Interestingly, axonal flow of both types of organelles change in opposite directions, with rates increasing for vesicles and decreasing for mitochondria. Overall, our observations highlight the need for a better spatiotemporal control for the study of intracellular dynamics in order to avoid misinterpretations and improve reproducibility.
Asunto(s)
Transporte Axonal , Axones/metabolismo , Mitocondrias/metabolismo , Proyección Neuronal , Vesículas Secretoras/metabolismo , Animales , Células Cultivadas , Microfluídica/métodos , RatasRESUMEN
Polyglutamine expansion in androgen receptor (AR) is responsible for spinobulbar muscular atrophy (SBMA) that leads to selective loss of lower motor neurons. Using SBMA as a model, we explored the relationship between protein structure/function and neurodegeneration in polyglutamine diseases. We show here that protein arginine methyltransferase 6 (PRMT6) is a specific co-activator of normal and mutant AR and that the interaction of PRMT6 with AR is significantly enhanced in the AR mutant. AR and PRMT6 interaction occurs through the PRMT6 steroid receptor interaction motif, LXXLL, and the AR activating function 2 surface. AR transactivation requires PRMT6 catalytic activity and involves methylation of arginine residues at Akt consensus site motifs, which is mutually exclusive with serine phosphorylation by Akt. The enhanced interaction of PRMT6 and mutant AR leads to neurodegeneration in cell and fly models of SBMA. These findings demonstrate a direct role of arginine methylation in polyglutamine disease pathogenesis.
Asunto(s)
Proteínas de Drosophila/genética , Trastornos Musculares Atróficos/enzimología , Péptidos/genética , Proteína-Arginina N-Metiltransferasas/metabolismo , ARN Mensajero/análisis , Receptores Androgénicos/metabolismo , Animales , Células COS , Chlorocebus aethiops , Drosophila , Proteínas de Drosophila/metabolismo , Células HEK293 , Humanos , Ratones , Trastornos Musculares Atróficos/genética , Trastornos Musculares Atróficos/metabolismo , Proteínas Nucleares/metabolismo , Células PC12 , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores Androgénicos/genéticaRESUMEN
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by selective loss of upper and lower motor neurons and skeletal muscle atrophy. Epidemiologic and experimental evidence suggest the involvement of androgens in ALS pathogenesis, but the mechanism through which androgens modify the ALS phenotype is unknown. Here, we show that androgen ablation by surgical castration extends survival and disease duration of a transgenic mouse model of ALS expressing mutant human SOD1 (hSOD1-G93A). Furthermore, long-term treatment of orchiectomized hSOD1-G93A mice with nandrolone decanoate (ND), an anabolic androgenic steroid, worsened disease manifestations. ND treatment induced muscle fiber hypertrophy but caused motor neuron death. ND negatively affected survival, thereby dissociating skeletal muscle pathology from life span in this ALS mouse model. Interestingly, orchiectomy decreased androgen receptor levels in the spinal cord and muscle, whereas ND treatment had the opposite effect. Notably, stimulation with ND promoted the recruitment of endogenous androgen receptor into biochemical complexes that were insoluble in sodium dodecyl sulfate, a finding consistent with protein aggregation. Overall, our results shed light on the role of androgens as modifiers of ALS pathogenesis via dysregulation of androgen receptor homeostasis.
Asunto(s)
Esclerosis Amiotrófica Lateral/etiología , Esclerosis Amiotrófica Lateral/genética , Andrógenos/fisiología , Neuronas Motoras/efectos de los fármacos , Neuronas Motoras/patología , Músculo Esquelético/metabolismo , Receptores Androgénicos/metabolismo , Superóxido Dismutasa , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Anabolizantes/efectos adversos , Animales , Muerte Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Humanos , Hipertrofia , Masculino , Ratones , Ratones Transgénicos , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/patología , Nandrolona/efectos adversos , Nandrolona/análogos & derivados , Nandrolona Decanoato , Orquiectomía , Médula Espinal/metabolismo , Superóxido Dismutasa-1RESUMEN
Amyotrophic lateral sclerosis (ALS) is a late onset and progressive motor neuron disease. Mutations in the gene coding for fused in sarcoma/translocated in liposarcoma (FUS) are responsible for some cases of both familial and sporadic forms of ALS. The mechanism through which mutations of FUS result in motor neuron degeneration and loss is not known. FUS belongs to the family of TET proteins, which are regulated at the post-translational level by arginine methylation. Here, we investigated the impact of arginine methylation in the pathogenesis of FUS-related ALS. We found that wild type FUS (FUS-WT) specifically interacts with protein arginine methyltransferases 1 and 8 (PRMT1 and PRMT8) and undergoes asymmetric dimethylation in cultured cells. ALS-causing FUS mutants retained the ability to interact with both PRMT1 and PRMT8 and undergo asymmetric dimethylation similar to FUS-WT. Importantly, PRMT1 and PRMT8 localized to mutant FUS-positive inclusion bodies. Pharmacologic inhibition of PRMT1 and PRMT8 activity reduced both the nuclear and cytoplasmic accumulation of FUS-WT and ALS-associated FUS mutants in motor neuron-derived cells and in cells obtained from an ALS patient carrying the R518G mutation. Genetic ablation of the fly homologue of human PRMT1 (DART1) exacerbated the neurodegeneration induced by overexpression of FUS-WT and R521H FUS mutant in a Drosophila model of FUS-related ALS. These results support a role for arginine methylation in the pathogenesis of FUS-related ALS.