Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Pharm Sci ; 113(7): 1987-1995, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38615815

RESUMEN

Accurate measurement of non-specific binding of a drug candidate to human liver microsomes (HLM) can be critical for the accurate determination of key enzyme kinetic parameters such as Michaelis-Menton (Km), reversible inhibition (Ki), or inactivation (KI) constants. Several methods have been developed to determine non-specific binding of small molecules to HLM, such as rapid equilibrium dialysis (RED), ultrafiltration (UF), HLM bound to magnetizable beads (HLM-beads), ultracentrifugation (UC), the linear extrapolation stability assay (LESA), and the Transil™ system. Despite various differences in methodology between these methods, it is generally presumed that similar free fraction values (fu,mic) should be generated. To evaluate this hypothesis, a test set of 9 compounds were selected, representing low (high fu,mic value) and significant (low fu,mic value) HLM binding, respectively, across HLM concentrations tested in this manuscript. The fu,mic values were determined using a single compound concentration (1.0 µM) and three HLM concentrations (0.025, 0.50, and 1.0 mg/mL). When the HLM non-specific binding event is not extensive resulting in high fu,mic values, all methods generated similar fu,mic values. However, fu,mic values varied markedly across assay formats when high binding to HLM occurred, where fu,mic values differed by up to 33-fold depending on the method used. Potential causes for such discrepancies across the various methods employed, practical implications related to conduct the different assays, and implications to clinical drug-drug interaction (DDI) predictions are discussed.


Asunto(s)
Microsomas Hepáticos , Ultrafiltración , Humanos , Microsomas Hepáticos/metabolismo , Ultrafiltración/métodos , Unión Proteica , Cinética , Ultracentrifugación/métodos , Preparaciones Farmacéuticas/metabolismo , Preparaciones Farmacéuticas/química , Diálisis/métodos
2.
Pharm Res ; 40(8): 1901-1913, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37280472

RESUMEN

PURPOSE: After single oral dosing of the glycine reuptake transporter (GlyT1) inhibitor, iclepertin (BI 425809), a single major circulating metabolite, M530a, was identified. However, upon multiple dosing, a second major metabolite, M232, was observed with exposure levels ~ twofold higher than M530a. Studies were conducted to characterize the metabolic pathways and enzymes responsible for formation of both major human metabolites. METHODS: In vitro studies were conducted with human and recombinant enzyme sources and enzyme-selective inhibitors. The production of iclepertin metabolites was monitored by LC-MS/MS. RESULTS: Iclepertin undergoes rapid oxidation to a putative carbinolamide that spontaneously opens to an aldehyde, M528, which then undergoes reduction by carbonyl reductase to the primary alcohol, M530a. However, the carbinolamide can also undergo a much slower oxidation by CYP3A to form an unstable imide metabolite, M526, that is subsequently hydrolyzed by a plasma amidase to form M232. This difference in rate of metabolism of the carbinolamine explains why high levels of the M232 metabolite were not observed in vitro and in single dose studies in humans, but were observed in longer-term multiple dose studies. CONCLUSIONS: The long half-life iclepertin metabolite M232 is formed from a common carbinolamine intermediate, that is also a precursor of M530a. However, the formation of M232 occurs much more slowly, likely contributing to its extensive exposure in vivo. These results highlight the need to employ adequate clinical study sampling periods and rigorous characterization of unexpected metabolites, especially when such metabolites are categorized as major, thus requiring safety assessment.


Asunto(s)
Inhibidores Enzimáticos , Espectrometría de Masas en Tándem , Humanos , Cromatografía Liquida , Semivida , Inhibidores Enzimáticos/metabolismo , Redes y Vías Metabólicas , Microsomas Hepáticos/metabolismo
3.
Drug Metab Dispos ; 48(8): 690-697, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32503882

RESUMEN

Long-term hepatocyte culture systems such as HepatoPac are well suited to evaluate the metabolic turnover of low clearance (CL) drugs because of their sustained metabolic capacity and longer-term viability. Erythromycin (ERY), a moderate, mechanism-based inhibitor of CYP3A, was evaluated as a tool in the HepatoPac model to assess contribution of CYP3A to the clearance of drug candidates. ERY inhibited CYP3A activity by 58% and 80% at 3 and 10 µM, respectively, for up to 72 hours. At 30 µM, ERY inhibited midazolam hydroxylation by >85% for the entire 144-hour duration of the incubation. Alprazolam CLint was inhibited 58% by 3 µM of ERY, 75% by 15 µM of ERY, 89% by 30 µM of ERY, and 94% by 60 µM of ERY. ERY (30 µM) did not markedly affect CLint of substrates for several other major cytochrome P450 isoforms evaluated and did not markedly inhibit uridine diphosphoglucuronosyl transferase (UGT) isoforms 1A1, 1A3, 1A4, 1A6, 1A9, 2B7, or 2B15 as assessed using recombinant UGTs. ERY only mildly increased CYP3A4 gene expression by 2.1-fold (14% of rifampicin induction) at 120 µM, indicating that at effective concentrations for inhibition of CYP3A activity (30-60 µM), arylhydrocarbon receptor, constitutive androstane receptor, and pregnane-X-receptor activation are not likely to markedly increase levels of other drug-metabolizing enzymes or transporters. ERY at concentrations up to 60 µM was not toxic for up to 6 days of incubation. Use of ERY to selectively inhibit CYP3A in high-functioning, long-term hepatocyte models such as HepatoPac can be a valuable strategy to evaluate the contribution of CYP3A metabolism to the overall clearance of slowly metabolized drug candidates. SIGNIFICANCE STATEMENT: This work describes the use of erythromycin as a selective inhibitor of CYP3A to assess the contribution of CYP3A in the metabolism of compounds using long-term hepatocyte cultures.


Asunto(s)
Inhibidores del Citocromo P-450 CYP3A/farmacología , Citocromo P-450 CYP3A/metabolismo , Eritromicina/farmacología , Eliminación Hepatobiliar/efectos de los fármacos , Adulto , Alprazolam/farmacocinética , Células Cultivadas , Técnicas de Cocultivo/métodos , Inductores del Citocromo P-450 CYP3A/farmacología , Evaluación Preclínica de Medicamentos/métodos , Femenino , Glucuronosiltransferasa/metabolismo , Hepatocitos , Humanos , Masculino , Midazolam/farmacocinética , Persona de Mediana Edad , Cultivo Primario de Células/métodos , Rifampin/farmacología , Factores de Tiempo
4.
Drug Metab Dispos ; 48(8): 645-654, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32474441

RESUMEN

Human liver microsomes (HLM) are a commonly used tool to study drug metabolism in vitro. Typical experiments conducted using suspensions of HLM can be challenging to separate from the incubation solution without lengthy ultracentrifugation steps. Magnetizable beads coated with silica (MGBS) were found to bind strongly to HLM, which could then be isolated and purified using a magnet. Binding of HLM to the MGBS (HLM-MGBS) was demonstrated to be mediated by strong interactions between microsomal phospholipids and MGBS, as artificially prepared phosphatidylcholine (PC) liposomes could be more efficiently captured by the MGBS. HLM-MGBS complexes retained functional cytochrome P450 and uridine-diphosphate-glucuronosyltransferase (UGT) activity as indicated by CYP2C8-mediated amodiaquine de-ethylation, CYP3A4-mediated midazolam 1'hydroxylation, UGT1A1-mediated glucuronidation of estradiol, UGT1A9-mediated glucuronidation of propofol, and UGT2B7-mediated glucuronidation of zidovudine. When comparing suspension HLM alone with HLM-MGBS complexes containing equivalent amounts of HLM, the intrinsic clearance (CLint) of CYP450 substrates was comparable; however, CLint of UGT1A1, UGT1A9, and UGT2B7 was increased in the HLM-MGBS system between 1.5- and 6-fold. HLM-MGBS used in an incubation could also be readily replaced with fresh HLM-MGBS to maintain the presence of active enzymes. Thus, HLM-MGBS demonstrate increased in vitro metabolic efficiency and manipulability, providing a new platform for determination of accurate metabolic parameters. SIGNIFICANCE STATEMENT: The following work describes the strong binding of HLM to magnetizable beads. In addition, the preservation of enzyme activity on the bound HLM provides a novel means to conduct preclinical metabolism studies.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Eliminación Hepatobiliar , Separación Celular/métodos , Sistema Enzimático del Citocromo P-450/metabolismo , Evaluación Preclínica de Medicamentos/métodos , Pruebas de Enzimas , Glucuronosiltransferasa/metabolismo , Humanos , Imanes , Microsomas Hepáticos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...