Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biochim Biophys Acta Bioenerg ; 1862(6): 148399, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33592209

RESUMEN

Many cellular processes involve the participation of large macromolecular assemblies. Understanding their function requires methods allowing to study their dynamic and mechanistic properties. Here we present a method for quantitative analysis of native protein or ribonucleoprotein complexes by mass spectrometry following their separation by density - qDGMS. Mass spectrometric quantitation is enabled through stable isotope labelling with amino acids in cell culture (SILAC). We provide a complete guide, from experimental design to preparation of publication-ready figures, using a purposely-developed R package - ComPrAn. As specific examples, we present the use of sucrose density gradients to inspect the assembly and dynamics of the human mitochondrial ribosome (mitoribosome), its interacting proteins, the small subunit of the cytoplasmic ribosome, cytoplasmic aminoacyl-tRNA synthetase complex and the mitochondrial PDH complex. ComPrAn provides tools for analysis of peptide-level data as well as normalization and clustering tools for protein-level data, dedicated visualization functions and graphical user interface. Although, it has been developed for the analysis of qDGMS samples, it can also be used for other proteomics experiments that involve 2-state labelled samples separated into fractions. We show that qDGMS and ComPrAn can be used to study macromolecular complexes in their native state, accounting for the dynamics inherent to biological systems and benefiting from its proteome-wide quantitative and qualitative capability.


Asunto(s)
Sustancias Macromoleculares/análisis , Sustancias Macromoleculares/metabolismo , Espectrometría de Masas/métodos , Mitocondrias/metabolismo , Proteoma/análisis , Proteoma/metabolismo , Programas Informáticos , Humanos , Ribonucleoproteínas/metabolismo
2.
Sci Data ; 3: 160075, 2016 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-27622383

RESUMEN

Wild populations of the house mouse (Mus musculus) represent the raw genetic material for the classical inbred strains in biomedical research and are a major model system for evolutionary biology. We provide whole genome sequencing data of individuals representing natural populations of M. m. domesticus (24 individuals from 3 populations), M. m. helgolandicus (3 individuals), M. m. musculus (22 individuals from 3 populations) and M. spretus (8 individuals from one population). We use a single pipeline to map and call variants for these individuals and also include 10 additional individuals of M. m. castaneus for which genomic data are publically available. In addition, RNAseq data were obtained from 10 tissues of up to eight adult individuals from each of the three M. m. domesticus populations for which genomic data were collected. Data and analyses are presented via tracks viewable in the UCSC or IGV genome browsers. We also provide information on available outbred stocks and instructions on how to keep them in the laboratory.


Asunto(s)
Genoma , Genómica , Animales , Evolución Biológica , Ratones
3.
Neuro Oncol ; 17(2): 200-10, 2015 02.
Artículo en Inglés | MEDLINE | ID: mdl-25452390

RESUMEN

BACKGROUND: Accumulation and infiltration of microglia/brain macrophages around and into glioma tissue promote tumor invasion and expansion. One tumor-promoting mechanism of microglia/brain macrophages is upregulation of membrane type 1 matrix metalloprotease (MT1-MMP), which promotes the degradation of extracellular matrix. MT1-MMP upregulation is induced by soluble factors released by glioma cells activating microglial Toll-like receptor 2 (TLR2). METHODS: Versican identified by proteomics was silenced in glioma cells by short interference RNA and short hairpin RNA approaches and studied in vitro and after injection into mouse brains or organotypic brain slices. RESULTS: The splice variants V0/V1 of the endogenous TLR2 ligand versican are highly expressed in mouse and human glioma tissue. Versican-silenced gliomas induced less MT1-MMP expression in microglia both in vitro and in vivo, which resulted in smaller tumors and longer survival rates as compared with controls. Recombinant versican V1 induced significantly higher levels of MT1-MMP in wild-type microglia compared with untreated and treated TLR2 knockout microglial cells. Using glioma-injected organotypic brain slices, we found that the impact of versican signaling on glioma growth depended on the presence of microglia. Moreover, we found that TLR2 expression is upregulated in glioma-associated microglia but not in astrocytes. Additionally, an established TLR2 neutralizing antibody reduced glioma-induced microglial MT1-MMP expression as well as glioma growth ex vivo. CONCLUSIONS: Our results show that versican released from glioma promotes tumor expansion through glioma-associated microglial/macrophage TLR2 signaling and subsequent expression of MT1-MMP. This signaling cascade might be a novel target for glioma therapies.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Glioma/metabolismo , Macrófagos/metabolismo , Metaloproteinasa 1 de la Matriz/metabolismo , Microglía/metabolismo , Receptor Toll-Like 2/metabolismo , Versicanos/metabolismo , Animales , Línea Celular Tumoral , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Transducción de Señal , Tasa de Supervivencia , Receptor Toll-Like 2/genética
4.
BMC Evol Biol ; 10: 325, 2010 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-20977744

RESUMEN

BACKGROUND: Starting from Western Europe, the house mouse (Mus musculus domesticus) has spread across the globe in historic times. However, most oceanic islands were colonized by mice only within the past 300 years. This makes them an excellent model for studying the evolutionary processes during early stages of new colonization. We have focused here on the Kerguelen Archipelago, located within the sub-Antarctic area and compare the patterns with samples from other Southern Ocean islands. RESULTS: We have typed 18 autosomal and six Y-chromosomal microsatellite loci and obtained mitochondrial D-loop sequences for a total of 534 samples, mainly from the Kerguelen Archipelago, but also from the Falkland Islands, Marion Island, Amsterdam Island, Antipodes Island, Macquarie Island, Auckland Islands and one sample from South Georgia. We find that most of the mice on the Kerguelen Archipelago have the same mitochondrial haplotype and all share the same major Y-chromosomal haplotype. Two small islands (Cochons Island and Cimetière Island) within the archipelago show a different mitochondrial haplotype, are genetically distinct for autosomal loci, but share the major Y-chromosomal haplotype. In the mitochondrial D-loop sequences, we find several single step mutational derivatives of one of the major mitochondrial haplotypes, suggesting an unusually high mutation rate, or the occurrence of selective sweeps in mitochondria. CONCLUSIONS: Although there was heavy ship traffic for over a hundred years to the Kerguelen Archipelago, it appears that the mice that have arrived first have colonized the main island (Grande Terre) and most of the associated small islands. The second invasion that we see in our data has occurred on islands that are detached from Grande Terre and were likely to have had no resident mice prior to their arrival. The genetic data suggest that the mice of both primary invasions originated from related source populations. Our data suggest that an area colonized by mice is refractory to further introgression, possibly due to fast adaptations of the resident mice to local conditions.


Asunto(s)
Geografía , Animales , ADN Mitocondrial/genética , Europa (Continente) , Genética de Población , Haplotipos/genética , Ratones , Repeticiones de Microsatélite/genética , Filogenia , Cromosoma Y/genética
5.
Mol Biol Evol ; 27(8): 1845-56, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20200126

RESUMEN

Copy number variation (CNV) contributes significantly to natural genetic variation within and between populations. However, the mutational mechanisms leading to CNV, as well as the processes that control the size of CNV regions, are so far not well understood. Here, we have analyzed a gene family that forms CNV regions on the X and the Y chromosomes in Mus musculus. These CNV regions show copy number differences in two subspecies, M. musculus domesticus and M. musculus musculus. Assessment of copy numbers at these loci for individuals caught in a natural hybrid zone showed copy number increases and a large variance among individuals. Crosses of natural hybrid animals among each other produced even more extreme variants with major differences in copy number in the offspring from the same parents. To assess the inheritance pattern of the loci further, we have produced F1 and backcross hybrid animals from these subspecies. We found that copy number expansions can already be traced in F1 offspring and they became stronger in the backcross individuals. Specific analysis of hybrid male offspring indicated that neither meiotic recombination nor interchromosomal exchange was required for creating these changes because the X and Y chromosomes have no homologues in males. This suggests that intrachromosomal exchanges can drive CNV and that this can occur at an elevated frequency in interspecific crosses, even within an individual. Accordingly, we find copy number mosaicism in individuals, that is, DNA from different tissues of the same individual can have different copy numbers for the loci studied. A preliminary survey of autosomal loci suggests that these can also be subject to change in hybrids. Hence, we conclude that the effects we see are not only restricted to some specific loci but may also be caused by a general induction of replication-coupled repair processes.


Asunto(s)
Cruzamientos Genéticos , Variaciones en el Número de Copia de ADN , Genética de Población , Ratones/genética , Animales , Cromosomas de los Mamíferos/genética , Hibridación Genómica Comparativa/métodos , Europa (Continente) , Femenino , Genoma , Humanos , Masculino , Reacción en Cadena de la Polimerasa/métodos
6.
Dev Biol ; 278(2): 459-72, 2005 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-15680363

RESUMEN

The Drosophila melanogaster genes midline and H15 encode predicted T-box transcription factors homologous to vertebrate Tbx20 genes. All identified vertebrate Tbx20 genes are expressed in the embryonic heart and we find that both midline and H15 are expressed in the cardioblasts of the dorsal vessel, the insect organ equivalent to the vertebrate heart. The midline mRNA is first detected in dorsal mesoderm at embryonic stage 12 in the two progenitors per hemisegment that will divide to give rise to all six cardioblasts. Expression of H15 mRNA in the dorsal mesoderm is detected first in four to six cells per hemisegment at stage 13. The expression of midline and H15 in the dorsal vessel is dependent on Wingless signaling and the transcription factors tinman and pannier. We find that the selection of two midline-expressing cells from a pool of competent progenitors is dependent on Notch signaling. Embryos deleted for both midline and H15 have defects in the alignment of the cardioblasts and associated pericardial cells. Embryos null for midline have weaker and less penetrant phenotypes while embryos deficient for H15 have morphologically normal hearts, suggesting that the two genes are partially redundant in heart development. Despite the dorsal vessel defects, embryos mutant for both midline and H15 have normal numbers of cardioblasts, suggesting that cardiac cell fate specification is not disrupted. However, ectopic expression of midline in the dorsal mesoderm can lead to dramatic increases in the expression of cardiac markers, suggesting that midline and H15 participate in cardiac fate specification and may normally act redundantly with other cardiogenic factors. Conservation of Tbx20 expression and function in cardiac development lends further support for a common ancestral origin of the insect dorsal vessel and the vertebrate heart.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Corazón/embriología , Proteínas de Dominio T Box/genética , Animales , Tipificación del Cuerpo/genética , Drosophila melanogaster/citología , Embrión no Mamífero/fisiología , Hibridación in Situ , Morfogénesis/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...