Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
Nat Aging ; 4(1): 14-26, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38102454

RESUMEN

Over the past decade, there has been a dramatic increase in efforts to ameliorate aging and the diseases it causes, with transient expression of nuclear reprogramming factors recently emerging as an intriguing approach. Expression of these factors, either systemically or in a tissue-specific manner, has been shown to combat age-related deterioration in mouse and human model systems at the cellular, tissue and organismal level. Here we discuss the current state of epigenetic rejuvenation strategies via partial reprogramming in both mouse and human models. For each classical reprogramming factor, we provide a brief description of its contribution to reprogramming and discuss additional factors or chemical strategies. We discuss what is known regarding chromatin remodeling and the molecular dynamics underlying rejuvenation, and, finally, we consider strategies to improve the practical uses of epigenetic reprogramming to treat aging and age-related diseases, focusing on the open questions and remaining challenges in this emerging field.


Asunto(s)
Células Madre Pluripotentes Inducidas , Rejuvenecimiento , Humanos , Animales , Ratones , Envejecimiento/genética , Reprogramación Celular/genética , Epigénesis Genética
3.
Nucleic Acids Res ; 51(17): 8934-8956, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37607832

RESUMEN

An engineered SOX17 variant with point mutations within its DNA binding domain termed SOX17FNV is a more potent pluripotency inducer than SOX2, yet the underlying mechanism remains unclear. Although wild-type SOX17 was incapable of inducing pluripotency, SOX17FNV outperformed SOX2 in mouse and human pluripotency reprogramming. In embryonic stem cells, SOX17FNV could replace SOX2 to maintain pluripotency despite considerable sequence differences and upregulated genes expressed in cleavage-stage embryos. Mechanistically, SOX17FNV co-bound OCT4 more cooperatively than SOX2 in the context of the canonical SoxOct DNA element. SOX2, SOX17, and SOX17FNV were all able to bind nucleosome core particles in vitro, which is a prerequisite for pioneer transcription factors. Experiments using purified proteins and in cellular contexts showed that SOX17 variants phase-separated more efficiently than SOX2, suggesting an enhanced ability to self-organise. Systematic deletion analyses showed that the N-terminus of SOX17FNV was dispensable for its reprogramming activity. However, the C-terminus encodes essential domains indicating multivalent interactions that drive transactivation and reprogramming. We defined a minimal SOX17FNV (miniSOX) that can support reprogramming with high activity, reducing the payload of reprogramming cassettes. This study uncovers the mechanisms behind SOX17FNV-induced pluripotency and establishes engineered SOX factors as powerful cell engineering tools.


Asunto(s)
Reprogramación Celular , Células Madre Pluripotentes Inducidas , Humanos , Ratones , Animales , Factores de Transcripción/metabolismo , Células Madre Embrionarias/metabolismo , ADN/metabolismo , Mutación Puntual , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo , Diferenciación Celular/genética , Células Madre Pluripotentes Inducidas/metabolismo , Factores de Transcripción SOXF/genética , Factores de Transcripción SOXF/metabolismo
4.
Int J Stem Cells ; 16(1): 36-43, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36581370

RESUMEN

Background and Objectives: Lymphoblastoid cell lines (LCLs) deposited from disease-affected individuals could be a valuable donor cell source for generating disease-specific induced pluripotent stem cells (iPSCs). However, generation of iPSCs from the LCLs is still challenging, as yet no effective gene delivery strategy has been developed. Methods and Results: Here, we reveal an effective gene delivery method specifically for LCLs. We found that LCLs appear to be refractory toward retroviral and lentiviral transduction. Consequently, lentiviral and retroviral transduction of OCT4, SOX2, KFL4 and c-MYC into LCLs does not elicit iPSC colony formation. Interestingly, however we found that transfection of oriP/EBNA-1-based episomal vectors by electroporation is an efficient gene delivery system into LCLs, enabling iPSC generation from LCLs. These iPSCs expressed pluripotency makers (OCT4, NANOG, SSEA4, SALL4) and could form embryoid bodies. Conclusions: Our data show that electroporation is an effective gene delivery method with which LCLs can be efficiently reprogrammed into iPSCs.

5.
Int J Stem Cells ; 16(1): 44-51, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36310027

RESUMEN

Background and Objectives: DNA methyltransferases (Dnmts) play an important role in regulating DNA methylation during early developmental processes and cellular differentiation. In this study, we aimed to investigate the role of Dnmts in neural differentiation of embryonic stem cells (ESCs) and in maintenance of the resulting neural stem cells (NSCs). Methods and Results: We used three types of Dnmt knockout (KO) ESCs, including Dnmt1 KO, Dnmt3a/3b double KO (Dnmt3 DKO), and Dnmt1/3a/3b triple KO (Dnmt TKO), to investigate the role of Dnmts in neural differentiation of ESCs. All three types of Dnmt KO ESCs could form neural rosette and differentiate into NSCs in vitro. Interestingly, however, after passage three, Dnmt KO ESC-derived NSCs could not maintain their self-renewal and differentiated into neurons and glial cells. Conclusions: Taken together, the data suggested that, although deficiency of Dnmts had no effect on the differentiation of ESCs into NSCs, the latter had defective maintenance, thereby indicating that Dnmts are crucial for self-renewal of NSCs.

6.
PLoS Comput Biol ; 17(6): e1009013, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34081696

RESUMEN

Genomic DNA is packaged in chromatin, a dynamic fiber variable in size and compaction. In chromatin, repeating nucleosome units wrap 145-147 DNA basepairs around histone proteins. Genetic and epigenetic regulation of genes relies on structural transitions in chromatin which are driven by intra- and inter-nucleosome dynamics and modulated by chemical modifications of the unstructured terminal tails of histones. Here we demonstrate how the interplay between histone H3 and H2A tails control ample nucleosome breathing motions. We monitored large openings of two genomic nucleosomes, and only moderate breathing of an engineered nucleosome in atomistic molecular simulations amounting to 24 µs. Transitions between open and closed nucleosome conformations were mediated by the displacement and changes in compaction of the two histone tails. These motions involved changes in the DNA interaction profiles of clusters of epigenetic regulatory aminoacids in the tails. Removing the histone tails resulted in a large increase of the amplitude of nucleosome breathing but did not change the sequence dependent pattern of the motions. Histone tail modulated nucleosome breathing is a key mechanism of chromatin dynamics with important implications for epigenetic regulation.


Asunto(s)
Genómica , Histonas/metabolismo , Nucleosomas/metabolismo , Análisis por Conglomerados , ADN/metabolismo , Epigénesis Genética , Simulación de Dinámica Molecular , Conformación de Ácido Nucleico
7.
Stem Cell Reports ; 9(5): 1423-1431, 2017 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-28988985

RESUMEN

Genome editing and human induced pluripotent stem cells hold great promise for the development of isogenic disease models and the correction of disease-associated mutations for isogenic tissue therapy. CRISPR-Cas9 has emerged as a versatile and simple tool for engineering human cells for such purposes. However, the current protocols to derive genome-edited lines require the screening of a great number of clones to obtain one free of random integration or on-locus non-homologous end joining (NHEJ)-containing alleles. Here, we describe an efficient method to derive biallelic genome-edited populations by the use of fluorescent markers. We call this technique FACS-assisted CRISPR-Cas9 editing (FACE). FACE allows the derivation of correctly edited polyclones carrying a positive selection fluorescent module and the exclusion of non-edited, random integrations and on-target allele NHEJ-containing cells. We derived a set of isogenic lines containing Parkinson's-disease-associated mutations in α-synuclein and present their comparative phenotypes.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica/métodos , Células Madre Pluripotentes Inducidas/metabolismo , Enfermedad de Parkinson/genética , alfa-Sinucleína/genética , Alelos , Células Cultivadas , Reparación del ADN por Unión de Extremidades/genética , Citometría de Flujo/métodos , Humanos , Células Madre Pluripotentes Inducidas/citología
8.
Stem Cell Reports ; 6(1): 35-43, 2016 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-26711876

RESUMEN

Somatic cells can be reprogrammed to pluripotency using different methods. In comparison with pluripotent cells obtained through somatic nuclear transfer, induced pluripotent stem cells (iPSCs) exhibit a higher number of epigenetic errors. Furthermore, most of these abnormalities have been described to be intrinsic to the iPSC technology. Here, we investigate whether the aberrant epigenetic patterns detected in iPSCs are specific to transcription factor-mediated reprogramming. We used germline stem cells (GSCs), which are the only adult cell type that can be converted into pluripotent cells (gPSCs) under defined culture conditions, and compared GSC-derived iPSCs and gPSCs at the transcriptional and epigenetic level. Our results show that both reprogramming methods generate indistinguishable states of pluripotency. GSC-derived iPSCs and gPSCs retained similar levels of donor cell-type memory and exhibited comparable numbers of reprogramming errors. Therefore, our study demonstrates that the epigenetic abnormalities detected in iPSCs are not specific to transcription factor-mediated reprogramming.


Asunto(s)
Reprogramación Celular/genética , Epigénesis Genética , Células Madre Pluripotentes Inducidas/metabolismo , Factores de Transcripción/genética , Animales , Diferenciación Celular/genética , Línea Celular , Células Cultivadas , Metilación de ADN , Perfilación de la Expresión Génica/métodos , Células Germinativas/citología , Células Germinativas/metabolismo , Proteínas de Homeodominio/genética , Humanos , Células Madre Pluripotentes Inducidas/citología , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/genética , Ratones , Proteína Homeótica Nanog , Factor 3 de Transcripción de Unión a Octámeros/genética , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
9.
Structure ; 22(9): 1274-1286, 2014 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-25126959

RESUMEN

In pluripotent cells, OCT4 associates with SOX2 to maintain pluripotency or with SOX17 to induce primitive endoderm commitment. The OCT4-SOX2 and OCT4-SOX17 combinations bind mutually exclusive to two distinct composite DNA elements, known as the "canonical" and "compressed" motifs, respectively. The structural basis for the OCT4-SOX17 cooperativity is unknown. Whereas SOX17 has been engineered to replace SOX2 in the pluripotency circuitry, all generated SOX2 mutants have failed to act like SOX17. From molecular simulations, we revealed the OCT4-SOX17 interaction interface and elucidated the SOX-dependent motif preference of OCT4. Moreover, we designed a SOX2 mutant that we predicted and confirmed experimentally to bind cooperatively with OCT4 to the compressed motif. Ultimately, we found a strong correlation between the experimental and calculated relative cooperative-binding free energies of 12 OCT4-SOX-DNA complexes. Therefore, we validated the OCT4-SOX interfaces and demonstrated that in silico design of DNA-binding cooperativity is suitable for altering transcriptional circuitries.


Asunto(s)
Proteínas HMGB/química , Factor 3 de Transcripción de Unión a Octámeros/química , Factores de Transcripción SOXB1/química , Factores de Transcripción SOXF/química , Células Madre/fisiología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Diferenciación Celular , Secuencia de Consenso , ADN/química , Proteínas HMGB/genética , Interacciones Hidrofóbicas e Hidrofílicas , Ratones , Simulación de Dinámica Molecular , Datos de Secuencia Molecular , Factor 3 de Transcripción de Unión a Octámeros/genética , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXF/genética , Termodinámica
10.
Stem Cell Reports ; 2(3): 351-65, 2014 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-24672757

RESUMEN

Differentiated cells can be reprogrammed into induced pluripotent stem cells (iPSCs) after overexpressing four transcription factors, of which Oct4 is essential. To elucidate the role of Oct4 during reprogramming, we investigated the immediate transcriptional response to inducible Oct4 overexpression in various somatic murine cell types using microarray analysis. By downregulating somatic-specific genes, Oct4 induction influenced each transcriptional program in a unique manner. A significant upregulation of pluripotent markers could not be detected. Therefore, OCT4 facilitates reprogramming by interfering with the somatic transcriptional network rather than by directly initiating a pluripotent gene-expression program. Finally, Oct4 overexpression upregulated the gene Mgarp in all the analyzed cell types. Strikingly, Mgarp expression decreases during the first steps of reprogramming due to a KLF4-dependent inhibition. At later stages, OCT4 counteracts the repressive activity of KLF4, thereby enhancing Mgarp expression. We show that this temporal expression pattern is crucial for the efficient generation of iPSCs.


Asunto(s)
Reprogramación Celular , Células Madre Pluripotentes Inducidas , Factores de Transcripción de Tipo Kruppel/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Animales , Secuencia de Bases , Sitios de Unión , Células de la Médula Ósea/citología , Células de la Médula Ósea/metabolismo , Transdiferenciación Celular , Análisis por Conglomerados , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Fibroblastos/metabolismo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/química , Factores de Transcripción de Tipo Kruppel/clasificación , Ratones , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Motivos de Nucleótidos , Factor 3 de Transcripción de Unión a Octámeros/química , Factor 3 de Transcripción de Unión a Octámeros/clasificación , Especificidad de Órganos , Unión Proteica , Transcriptoma
11.
Biochim Biophys Acta ; 1839(3): 138-54, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24145198

RESUMEN

OCT4 was discovered more than two decades ago as a transcription factor specific to early embryonic development. Early studies with OCT4 were descriptive and looked at determining the functional roles of OCT4 in the embryo as well as in pluripotent cell lines derived from embryos. Later studies showed that OCT4 was one of the transcription factors in the four-factor cocktail required for reprogramming somatic cells into induced pluripotent stem cells (iPSCs) and that it is the only factor that cannot be substituted in this process by other members of the same protein family. In recent years, OCT4 has emerged as a master regulator of the induction and maintenance of cellular pluripotency, with crucial roles in the early stages of differentiation. Currently, mechanistic studies look at elucidating the molecular details of how OCT4 contributes to establishing selective gene expression programs that define different developmental stages of pluripotent cells. OCT4 belongs to the POU family of proteins, which have two conserved DNA-binding domains connected by a variable linker region. The functions of OCT4 depend on its ability to recognize and bind to DNA regulatory regions alone or in cooperation with other transcription factors and on its capacity to recruit other factors required to regulate the expression of specific sets of genes. Undoubtedly, future iPSC-based applications in regenerative medicine will benefit from understanding how OCT4 functions. Here we provide an integrated view of OCT4 research conducted to date by reviewing the different functional roles for OCT4 and discussing the current progress in understanding their underlying molecular mechanisms. This article is part of a Special Issue entitled: Chromatin and epigenetic regulation of animal development.


Asunto(s)
Diferenciación Celular/fisiología , ADN/metabolismo , Regulación de la Expresión Génica/fisiología , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Células Madre Pluripotentes/metabolismo , Elementos de Respuesta/fisiología , Animales , ADN/genética , Humanos , Factor 3 de Transcripción de Unión a Octámeros/genética , Células Madre Pluripotentes/citología
12.
Stem Cells Transl Med ; 2(9): 641-54, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23926210

RESUMEN

Patient-specific induced pluripotent stem cells (iPSCs) hold great promise for studies on disease-related developmental processes and may serve as an autologous cell source for future treatment of many hereditary diseases. New genetic engineering tools such as zinc finger nucleases and transcription activator-like effector nuclease allow targeted correction of monogenetic disorders but are very cumbersome to establish. Aiming at studies on the knockdown of a disease-causing gene, lentiviral vector-mediated expression of short hairpin RNAs (shRNAs) is a valuable option, but it is limited by silencing of the knockdown construct upon epigenetic remodeling during differentiation. Here, we propose an approach for the expression of a therapeutic shRNA in disease-specific iPSCs using third-generation lentiviral vectors. Targeting severe α-1-antitrypsin (A1AT) deficiency, we overexpressed a human microRNA 30 (miR30)-styled shRNA directed against the PiZ variant of A1AT, which is known to cause chronic liver damage in affected patients. This knockdown cassette is traceable from clonal iPSC lines to differentiated hepatic progeny via an enhanced green fluorescence protein reporter expressed from the same RNA-polymerase II promoter. Importantly, the cytomegalovirus i/e enhancer chicken ß actin (CAG) promoter-driven expression of this construct is sustained without transgene silencing during hepatic differentiation in vitro and in vivo. At low lentiviral copy numbers per genome we confirmed a functional relevant reduction (-66%) of intracellular PiZ protein in hepatic cells after differentiation of patient-specific iPSCs. In conclusion, we have demonstrated that lentiviral vector-mediated expression of shRNAs can be efficiently used to knock down and functionally evaluate disease-related genes in patient-specific iPSCs.


Asunto(s)
Técnicas de Silenciamiento del Gen/métodos , Terapia Genética/métodos , Hepatocitos/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Lentivirus/genética , MicroARNs/genética , Deficiencia de alfa 1-Antitripsina/terapia , Animales , Diferenciación Celular , Células Cultivadas , Vectores Genéticos , Proteínas Fluorescentes Verdes/genética , Hepatocitos/citología , Hepatocitos/virología , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/virología , Ratones , Ratones Transgénicos , Regiones Promotoras Genéticas , ARN Polimerasa II/genética , ARN Interferente Pequeño/genética , Transgenes , alfa 1-Antitripsina/genética , alfa 1-Antitripsina/metabolismo , Deficiencia de alfa 1-Antitripsina/genética , Deficiencia de alfa 1-Antitripsina/metabolismo
13.
Proc Natl Acad Sci U S A ; 109(40): 16196-201, 2012 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-22991473

RESUMEN

Generation of human induced pluripotent stem cells (hiPSCs) by the expression of specific transcription factors depends on successful epigenetic reprogramming to a pluripotent state. Although hiPSCs and human embryonic stem cells (hESCs) display a similar epigenome, recent reports demonstrated the persistence of specific epigenetic marks from the somatic cell type of origin and aberrant methylation patterns in hiPSCs. However, it remains unknown whether the use of different somatic cell sources, encompassing variable levels of selection pressure during reprogramming, influences the level of epigenetic aberrations in hiPSCs. In this work, we characterized the epigenomic integrity of 17 hiPSC lines derived from six different cell types with varied reprogramming efficiencies. We demonstrate that epigenetic aberrations are a general feature of the hiPSC state and are independent of the somatic cell source. Interestingly, we observe that the reprogramming efficiency of somatic cell lines inversely correlates with the amount of methylation change needed to acquire pluripotency. Additionally, we determine that both shared and line-specific epigenetic aberrations in hiPSCs can directly translate into changes in gene expression in both the pluripotent and differentiated states. Significantly, our analysis of different hiPSC lines from multiple cell types of origin allow us to identify a reprogramming-specific epigenetic signature comprised of nine aberrantly methylated genes that is able to segregate hESC and hiPSC lines regardless of the somatic cell source or differentiation state.


Asunto(s)
Reprogramación Celular/fisiología , Metilación de ADN/genética , Epigénesis Genética/fisiología , Células Madre Pluripotentes Inducidas/fisiología , Línea Celular , Reprogramación Celular/genética , Islas de CpG/genética , Epigénesis Genética/genética , Epigenómica , Técnica del Anticuerpo Fluorescente , Biblioteca de Genes , Humanos , Análisis por Micromatrices , Reacción en Cadena en Tiempo Real de la Polimerasa , Análisis de Secuencia de ADN
14.
Development ; 137(21): 3551-60, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20876643

RESUMEN

Oct1 (Pou2f1) is a transcription factor of the POU-homeodomain family that is unique in being ubiquitously expressed in both embryonic and adult mouse tissues. Although its expression profile suggests a crucial role in multiple regions of the developing organism, the only essential function demonstrated so far has been the regulation of cellular response to oxidative and metabolic stress. Here, we describe a loss-of-function mouse model for Oct1 that causes early embryonic lethality, with Oct1-null embryos failing to develop beyond the early streak stage. Molecular and morphological analyses of Oct1 mutant embryos revealed a failure in the establishment of a normal maternal-embryonic interface due to reduced extra-embryonic ectoderm formation and lack of the ectoplacental cone. Oct1(-/-) blastocysts display proper segregation of trophectoderm and inner cell mass lineages. However, Oct1 loss is not compatible with trophoblast stem cell derivation. Importantly, the early gastrulation defect caused by Oct1 disruption can be rescued in a tetraploid complementation assay. Oct1 is therefore primarily required for the maintenance and differentiation of the trophoblast stem cell compartment during early post-implantation development. We present evidence that Cdx2, which is expressed at high levels in trophoblast stem cells, is a direct transcriptional target of Oct1. Our data also suggest that Oct1 is required in the embryo proper from late gastrulation stages onwards.


Asunto(s)
Desarrollo Embrionario/genética , Transportador 1 de Catión Orgánico/fisiología , Trofoblastos/fisiología , Animales , Diferenciación Celular , Células Cultivadas , Pérdida del Embrión/genética , Embrión de Mamíferos , Femenino , Edad Gestacional , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Transportador 1 de Catión Orgánico/genética , Transportador 1 de Catión Orgánico/metabolismo , Embarazo , Factores de Tiempo , Trofoblastos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...