RESUMEN
We describe the geographical variation in tree species composition across Amazonian forests and show how environmental conditions are associated with species turnover. Our analyses are based on 2023 forest inventory plots (1 ha) that provide abundance data for a total of 5188 tree species. Within-plot species composition reflected both local environmental conditions (especially soil nutrients and hydrology) and geographical regions. A broader-scale view of species turnover was obtained by interpolating the relative tree species abundances over Amazonia into 47,441 0.1-degree grid cells. Two main dimensions of spatial change in tree species composition were identified. The first was a gradient between western Amazonia at the Andean forelands (with young geology and relatively nutrient-rich soils) and central-eastern Amazonia associated with the Guiana and Brazilian Shields (with more ancient geology and poor soils). The second gradient was between the wet forests of the northwest and the drier forests in southern Amazonia. Isolines linking cells of similar composition crossed major Amazonian rivers, suggesting that tree species distributions are not limited by rivers. Even though some areas of relatively sharp species turnover were identified, mostly the tree species composition changed gradually over large extents, which does not support delimiting clear discrete biogeographic regions within Amazonia.
Asunto(s)
Árboles , Brasil , Biodiversidad , Bosques , Suelo/química , Geografía , FilogeografíaRESUMEN
Inundations in Amazonian black-water river floodplain result in the selection of different tree lineages, thus promoting coexistence between species. We investigated whether Amazonian tree communities are phylogenetically structured and distributed along a flooding gradient from irregularly flooded forests along streams embedded within upland (terra-firme) forest to seasonally flooded floodplains of large rivers (igapós). Floristic inventories and hydrological monitoring were performed along the Falsino River, a black-water river in the eastern Amazon within the Amapá National Forest. We constructed a presence-and-absence matrix and generated a phylogeny using the vascular plant database available in GenBank. We calculated the standardized values of the metrics of phylogenetic diversity (ses.PD), average phylogenetic distance (ses.MPD), and average nearest-neighbor distance (ses.MNTD) to test whether the history of relationships between species in the community is influenced by inundation. We used the phylogenetic endemism (PE) metric to verify the existence of taxa with restricted distribution. Linear regressions were used to test whether phylogenetic metrics have a significant relationship with the variables: maximum flood height, maximum water table depth, and maximum flood amplitude. The results show that forests subject to prolonged seasonal flooding have reduced taxon richness, low phylogenetic diversity, and random distribution of lineages within communities. On the other hand, terra-firme riparian forests showed higher rates of taxon richness, diversity, and phylogenetic dispersion, in addition to greater phylogenetic endemism. These results indicate that seasonal and predictable soil flooding filters tree lineages along the hydrographic gradient. Different adaptations to root waterlogging are likely requirements for colonization in these environments and may represent an important factor in the diversification of tree lineages in the Amazon biome.
RESUMEN
Environmental stress is a fundamental facet of life and a significant driver of natural selection in the wild. Gene expression diversity may facilitate adaptation to environmental changes, without necessary genetic change, but its role in adaptive divergence remains largely understudied in Neotropical systems. In Amazonian riparian forests, species distribution is predominantly influenced by species' waterlogging tolerance. The flooding gradient delineates distinct wetland forest types, shaping habitats and species characteristics. Here we investigated the molecular basis of environmental stress response in a tropical ground-herb species (Ischnosiphon puberulus) to environmental variation in Amazonian riparian forests. We compared environmental variables and gene expression profiles from individuals collected in two forest types: Igapó and Terra firme in the Amazonian riparian forests. Predictable seasonal flooding poses a significant challenge in Igapó compared to Terra firme environments, with the former presenting higher water column height and longer flooding duration. Our findings suggest that contrasting environmental conditions related to flooding regimes are important drivers of population genetic differentiation and differential gene expression in I. puberulus. Enriched gene ontology terms highlight associations with environmental stresses, such as defence response, water transport, phosphorylation, root development, response to auxin, salicylic acid and oxidative stress. By uncovering key environmental stress response pathways conserved across populations, I. puberulus offers novel genetic insights into the molecular basis of plant reactions to environmental constraints found in flooded areas of this highly biodiverse neotropical ecosystem.
RESUMEN
In 2023 Amazonia experienced both historical drought and warm conditions. On October 26th 2023 the water levels at the port of Manaus reached its lowest record since 1902 (12.70 m). In this region, October monthly maximum and minimum temperature anomalies also surpassed previous record values registered in 2015 (+ 3 °C above the normal considering the 1981-2020 average). Here we show that this historical dry and warm situation in Amazonia is associated with two main atmospheric mechanisms: (i) the November 2022-February 2023 southern anomaly of vertical integrated moisture flux (VIMF), related to VIMF divergence and extreme rainfall deficit over southwestern Amazonia, and (ii) the June-August 2023 downward motion over northern Amazonia related to extreme rainfall deficit and warm conditions over this region. Anomalies of both atmospheric mechanisms reached record values during this event. The first mechanism is significantly correlated to negative sea surface temperature (SST) anomalies in the equatorial Pacific (November-February La Niña events). The second mechanism is significantly correlated to positive SST anomalies in the equatorial Pacific, related to the impacts of June-September El Niño on the Walker Circulation. While previous extreme droughts were linked to El Niño (warmer North Tropical Atlantic SST) during the austral summer (winter and spring), the transition from La Niña 2022-23 to El Niño 2023 appears to be a key climatic driver in this record-breaking dry and warm situation, combined to a widespread anomalous warming over the worldwide ocean.
RESUMEN
Amazonia's floodplain system is the largest and most biodiverse on Earth. Although forests are crucial to the ecological integrity of floodplains, our understanding of their species composition and how this may differ from surrounding forest types is still far too limited, particularly as changing inundation regimes begin to reshape floodplain tree communities and the critical ecosystem functions they underpin. Here we address this gap by taking a spatially explicit look at Amazonia-wide patterns of tree-species turnover and ecological specialization of the region's floodplain forests. We show that the majority of Amazonian tree species can inhabit floodplains, and about a sixth of Amazonian tree diversity is ecologically specialized on floodplains. The degree of specialization in floodplain communities is driven by regional flood patterns, with the most compositionally differentiated floodplain forests located centrally within the fluvial network and contingent on the most extraordinary flood magnitudes regionally. Our results provide a spatially explicit view of ecological specialization of floodplain forest communities and expose the need for whole-basin hydrological integrity to protect the Amazon's tree diversity and its function.
Asunto(s)
Biodiversidad , Inundaciones , Ríos , Árboles , Brasil , BosquesRESUMEN
The Amazonian clearwater igapós are poorly studied floodplain ecosystems that are mainly covered by forests and are undergoing massive threats due to changes in land use and climate. Their hydrochemical characteristics and edaphic conditions fall between those of the eutrophic várzea floodplains on whitewater rivers and those of the oligotrophic igapós on blackwater rivers. Previous studies have indicated the management potential of timber species in the highly dynamic várzea floodplains due to the fast tree growth and high forest productivity. Timber resource management, however, is not recommended for the blackwater ecosystem because of its slow dynamics and high vulnerability to disturbances. For clearwater igapós, information on the potential for sustainable management of timber resources is lacking. In this study, we modeled the growth in diameter, height, and volume to derive species-specific minimum logging diameters (MLD) and felling cycles (FC) for eight merchantable species in the clearwater igapós of the Branco and Tapajós rivers in the northern and southern Amazon Basin, respectively. Diameter growth was modeled by analyzing the tree rings that are annually formed in the Amazonian floodplains as a consequence of the regular and predicable long-term flooding. Growth modeling followed the guidelines of the Growth-Oriented Logging (GOL) concept, with the adjustment of diameter growth improved by applying nonlinear mixed-effects regression. MLDs varied from 36 to 90 cm and FCs ranged from 6 to 21 years, which diverges from the standards of Brazilian logging regulations (MLD: 50 cm; FC: 25-35 years). This indicates the potential for timber resource management, which should be tested and introduced at small scales, integrated in protected areas to stepwise promote the sustainable management of these natural resources by traditional communities to increase their income and the conservation of this ecosystem.
Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Bosques , Inundaciones , Especificidad de la EspecieRESUMEN
Using 2.046 botanically-inventoried tree plots across the largest tropical forest on Earth, we mapped tree species-diversity and tree species-richness at 0.1-degree resolution, and investigated drivers for diversity and richness. Using only location, stratified by forest type, as predictor, our spatial model, to the best of our knowledge, provides the most accurate map of tree diversity in Amazonia to date, explaining approximately 70% of the tree diversity and species-richness. Large soil-forest combinations determine a significant percentage of the variation in tree species-richness and tree alpha-diversity in Amazonian forest-plots. We suggest that the size and fragmentation of these systems drive their large-scale diversity patterns and hence local diversity. A model not using location but cumulative water deficit, tree density, and temperature seasonality explains 47% of the tree species-richness in the terra-firme forest in Amazonia. Over large areas across Amazonia, residuals of this relationship are small and poorly spatially structured, suggesting that much of the residual variation may be local. The Guyana Shield area has consistently negative residuals, showing that this area has lower tree species-richness than expected by our models. We provide extensive plot meta-data, including tree density, tree alpha-diversity and tree species-richness results and gridded maps at 0.1-degree resolution.
Asunto(s)
ARN Largo no Codificante , Árboles , Bosques , Suelo , TemperaturaRESUMEN
Given the speed at which humans are changing the climate, species with high degrees of endemism may not have time to avoid extinction through adaptation. We investigated through teleconnection analysis the origin of rainfall that determines the phylogenetic diversity of rainforest frogs and the effects of microclimate differences in shaping the morphological traits of isolated populations (which contribute to greater phylogenetic diversity and speciation). We also investigated through teleconnection analysis how deforestation in Amazonia can affect ecosystem services that are fundamental to maintaining the climate of the Atlantic rainforest biodiversity hotspot. Seasonal winds known as flying rivers carry water vapor from Amazonia to the Atlantic Forest, and the breaking of this ecosystem service could lead Atlantic Forest species to population decline and extinction in the short term. Our results suggest that the selection of morphological traits that shape Atlantic Forest frog diversity and their population dynamics are influenced by the Amazonian flying rivers. Our results also suggest that the increases of temperature anomalies in the Atlantic Ocean due to global warming and in the Amazon forest due to deforestation are already breaking this cycle and threaten the biodiversity of the Atlantic Forest hotspot.
Efectos de los ríos voladores de la Amazonía sobre la diversidad y las poblaciones de ranas en la Mata Atlántica Resumen Con la velocidad a la que la humanidad está alterando el clima, puede que las especies con un nivel elevado de endemismo no cuenten con tiempo suficiente para adaptarse y evitar la extinción. Usamos un análisis de teleconexión para investigar el origen de las precipitaciones que determinan la diversidad filogenética de las ranas selváticas y los efectos de las diferencias microclimáticas sobre la determinación de las características morfológicas de las poblaciones aisladas, las cuales contribuyen a una mayor especiación y diversidad filogenética. También utilizamos este análisis para investigar cómo la deforestación en la Amazonía puede afectar los servicios ambientales que son fundamentales para mantener el punto caliente de biodiversidad que es la Mata Atlántica. Los ríos voladores son vientos estacionales que transportan vapor de agua desde la Amazonía hasta la Mata Atlántica; la interrupción de este servicio ambiental podría derivar en la declinación poblacional y la extinción a corto plazo de las especies en este ecosistema. Nuestros resultados sugieren que los ríos voladores de la Amazonía influyen sobre la selección de las características morfológicas que determinan la diversidad de ranas y sus dinámicas poblacionales en la Mata Atlántica. Nuestros resultados también sugieren que el incremento de anomalías térmicas en el Océano Atlántico, causadas por el calentamiento global, y en la Amazonía, causadas por la deforestación, ya están interrumpiendo este ciclo y son una amenaza para la biodiversidad del punto caliente que es la Mata Atlántica.
Asunto(s)
Ecosistema , Bosque Lluvioso , Humanos , Animales , Filogenia , Conservación de los Recursos Naturales , Biodiversidad , Brasil , AnurosRESUMEN
Extant climate observations suggest the dry season over large parts of the Amazon Basin has become longer and drier over recent decades. However, such possible intensification of the Amazon dry season and its underlying causes are still a matter of debate. Here we used oxygen isotope ratios in tree rings (δ18OTR) from six floodplain trees from the western Amazon to assess changes in past climate. Our analysis shows that δ18OTR of these trees is negatively related to inter-annual variability of precipitation during the dry season over large parts of the Amazon Basin, consistent with a Rayleigh rainout model. Furthermore δ18OTR increases by approximately 2 over the last four decades (~ 1970-2014) providing evidence of an Amazon drying trend independent from satellite and in situ rainfall observations. Using a Rayleigh rainout framework, we estimate basin-wide dry season rainfall to have decreased by up to 30%. The δ18OTR record further suggests such drying trend may not be unprecedented over the past 80 years. Analysis of δ18OTR with sea surface temperatures indicates a strong role of a warming Tropical North Atlantic Ocean in driving this long-term increase in δ18OTR and decrease in dry season rainfall. Supplementary Information: The online version contains supplementary material available at 10.1007/s00382-021-06046-7.
RESUMEN
Forests are the largest terrestrial biomass pool, with over half of this biomass stored in the highly productive tropical lowland forests. The future evolution of forest biomass depends critically on the response of tree longevity and growth rates to future climate. We present an analysis of the variation in tree longevity and growth rate using tree-ring data of 3,343 populations and 438 tree species and assess how climate controls growth and tree longevity across world biomes. Tropical trees grow, on average, two times faster compared to trees from temperate and boreal biomes and live significantly shorter, on average (186 ± 138 y compared to 322 ± 201 y outside the tropics). At the global scale, growth rates and longevity covary strongly with temperature. Within the warm tropical lowlands, where broadleaf species dominate the vegetation, we find consistent decreases in tree longevity with increasing aridity, as well as a pronounced reduction in longevity above mean annual temperatures of 25.4 °C. These independent effects of temperature and water availability on tree longevity in the tropics are consistent with theoretical predictions of increases in evaporative demands at the leaf level under a warmer and drier climate and could explain observed increases in tree mortality in tropical forests, including the Amazon, and shifts in forest composition in western Africa. Our results suggest that conditions supporting only lower tree longevity in the tropical lowlands are likely to expand under future drier and especially warmer climates.
Asunto(s)
Longevidad , Temperatura , Árboles/anatomía & histología , Árboles/fisiología , Clima Tropical , Ecosistema , Geografía , Modelos Teóricos , Árboles/crecimiento & desarrollo , AguaRESUMEN
Amazonian forests are extraordinarily diverse, but the estimated species richness is very much debated. Here, we apply an ensemble of parametric estimators and a novel technique that includes conspecific spatial aggregation to an extended database of forest plots with up-to-date taxonomy. We show that the species abundance distribution of Amazonia is best approximated by a logseries with aggregated individuals, where aggregation increases with rarity. By averaging several methods to estimate total richness, we confirm that over 15,000 tree species are expected to occur in Amazonia. We also show that using ten times the number of plots would result in an increase to just ~50% of those 15,000 estimated species. To get a more complete sample of all tree species, rigorous field campaigns may be needed but the number of trees in Amazonia will remain an estimate for years to come.
Asunto(s)
Biodiversidad , Clasificación/métodos , Bosques , Ríos , Árboles/clasificación , BrasilRESUMEN
The long-lived tree species Eschweilera tenuifolia (O. Berg) Miers is characteristic of oligotrophic Amazonian black-water floodplain forests (igapó), seasonally inundated up to 10 months per year, often forming monodominant stands. We investigated E. tenuifolia' growth and mortality patterns in undisturbed (Jaú National Park - JNP) and disturbed igapós (Uatumã Sustainable Development Reserve - USDR, downstream of the Balbina hydroelectric dam). We analysed age-diameter relationships, basal area increment (BAI) through 5-cm diameter classes, growth changes and growth ratios preceding death, BAI clustering, BAI ratio, and dated the individual year of death (14 C). Growth and mortality patterns were then related to climatic or anthropogenic disturbances. Results were similar for both populations for estimated maximum ages (JNP, 466 yr; USDR, 498 yr, except for one USDR tree with an estimated age of 820 yr) and slightly different for mean diameter increment (JNP: 2.04 mm; USDR: 2.28 mm). Living trees from JNP showed altered growth post-1975 and sparse tree mortality occurred at various times, possibly induced by extreme hydroclimatic events. In contrast with the JNP, abrupt growth changes and massive mortality occurred in the USDR after the dam construction began (1983). Even more than 30 yr after dam construction, flood-pulse alteration continues to affect both growth and mortality of E. tenuifolia. Besides its vulnerability to anthropogenic disturbances, this species is also susceptible to long-lasting dry and wet periods induced by climatic events, the combination of both processes may cause its local and regional extinction.
Asunto(s)
Inundaciones , Árboles , BosquesRESUMEN
After the ice caps, tropical forests are globally the most threatened terrestrial environments. Modern trees are not just witnesses to growing contemporary threats but also legacies of past human activity. Here, we review the use of dendrochronology, radiocarbon analysis, stable isotope analysis, and DNA analysis to examine ancient tree management. These methods exploit the fact that living trees record information on environmental and anthropogenic selective forces during their own and past generations of growth, making trees living archaeological 'sites'. The applicability of these methods across prehistoric, historic, and industrial periods means they have the potential to detect evolving anthropogenic threats and can be used to set conservation priorities in rapidly vanishing environments.
Asunto(s)
Conservación de los Recursos Naturales , Árboles , Cápsulas , Bosques , Humanos , Industrias , Clima TropicalRESUMEN
Tropical forests are known for their high diversity. Yet, forest patches do occur in the tropics where a single tree species is dominant. Such "monodominant" forests are known from all of the main tropical regions. For Amazonia, we sampled the occurrence of monodominance in a massive, basin-wide database of forest-inventory plots from the Amazon Tree Diversity Network (ATDN). Utilizing a simple defining metric of at least half of the trees ≥ 10 cm diameter belonging to one species, we found only a few occurrences of monodominance in Amazonia, and the phenomenon was not significantly linked to previously hypothesized life history traits such wood density, seed mass, ectomycorrhizal associations, or Rhizobium nodulation. In our analysis, coppicing (the formation of sprouts at the base of the tree or on roots) was the only trait significantly linked to monodominance. While at specific locales coppicing or ectomycorrhizal associations may confer a considerable advantage to a tree species and lead to its monodominance, very few species have these traits. Mining of the ATDN dataset suggests that monodominance is quite rare in Amazonia, and may be linked primarily to edaphic factors.
RESUMEN
Recent investigations indicate a warming of Atlantic Ocean surface waters since 1980, probably influenced by anthropic actions, inducing rainfall intensification mainly during the rainy season and slight reductions during the dry season in the Amazon. Under these climate changes, trees in upland forests (terra firme) could benefit from the intensification of the hydrological cycle and could also be affected by the reduction of precipitation during the dry season. Results of dendrochronological analyses, spatial correlations and structural equation models, showed that Scleronema micranthum (Ducke) Ducke (Malvaceae) trees exposed in fragmented areas and to edge effects in Central Amazonian terra firme forest were more sensitive to the increase in the Atlantic Ocean surface temperature and consequent northward displacement of the Intertropical Convergence Zone, mainly during the dry season. Therefore, we proved that in altered and potentially more stressful environments such as edges of fragmented forests, recent anthropogenic climatic changes are exerting pressure on tree growth dynamics, inducing alterations in their performance and, consequently, in essential processes related to ecosystem services. Changes that could affect human well-being, highlighting the need for strategies that reduce edge areas expansion in Amazon forests and anthropic climate changes of the Anthropocene.
Asunto(s)
Cambio Climático , Malvaceae/crecimiento & desarrollo , Bosque Lluvioso , Árboles/crecimiento & desarrollo , Brasil , Lluvia , Clima TropicalRESUMEN
The conservation of tropical forests is recognized as one of the most important challenges for forestry, ecology and politics. Besides strict protection, the sustainable management of natural forests should be enhanced as a key part of the foundation for the maintenance of tropical rain forest ecosystems. Due to methodological reasons it has been complicated to attain reliable growth data to plan sustainable felling cycles and rotation periods. Tree ring analyses enable the estimation of growth rates over the entire life span of trees and their age as well as giving hints from forest dynamics in previous centuries. For tree ring analysis, stem disk samples were taken from three important commercial tree species (Cariniana micrantha, Caryocar villosum and Manilkara huberi) in the upland (terra firme) forests of the Precious Woods Amazon logging company near Itacoatiara, Brazil. Based on radiocarbon estimates of individual growth zones, the annual nature of tree rings was proven for the three species. Tree rings were measured and the results used together with height estimates to model diameter, height and volume growth. The age of the eldest tree, a C. micrantha, was 585 yrs with 165 cm in diameter. The species' diameter increments range from 0.20±0.12 cm yr-1 to 0.29±0.08 cm yr-1. At first sight, this is considerably lower than increments reported from other Amazonian or African timber species. Considering the respective wood density there is no significant difference in growth performance of dominant timber species across continents. The interpretation of lifetime tree ring curves indicate differences in shadow tolerance among species, the persistence of individuals in the understory for up to 150 years and natural stand dynamics without major disturbances. Management criteria should be adapted for the measured growth rates as they differed considerably from the Brazilian standards fixed by laws (felling cycle of 25-35 years and a common minimum logging diameter of 50 cm). Felling cycles should be increased to 32-51 years and minimum logging diameters to 63-123 cm depending on the species.
Asunto(s)
Conservación de los Recursos Naturales/métodos , Bosques , Árboles/crecimiento & desarrollo , Clima Tropical , Modelos Estadísticos , Especificidad de la EspecieRESUMEN
Large dams built for hydroelectric power generation alter the hydrology of rivers, attenuating the flood pulse downstream of the dam and impacting riparian and floodplain ecosystems. The present work mapped black-water floodplain forests (igapó) downstream of the Balbina Reservoir, which was created between 1983 and 1987 by damming the Uatumã River in the Central Amazon basin. We apply remote sensing methods to detect tree mortality resulting from hydrological changes, based on analysis of 56 ALOS/PALSAR synthetic aperture radar images acquired at different flood levels between 2006 and 2011. Our application of object-based image analysis (OBIA) methods and the random forests supervised classification algorithm yielded an overall accuracy of 87.2%. A total of 9800â¯km2 of igapó forests were mapped along the entire river downstream of the dam, but forest mortality was only observed below the first 49â¯km downstream, after the Morena rapids, along an 80-km river stretch. In total, 12% of the floodplain forest died within this stretch. We also detected that 29% of the remaining living igapó forest may be presently undergoing mortality. Furthermore, this large loss does not include the entirety of lost igapó forests downstream of the dam; areas which are now above current maximum flooding heights are no longer floodable and do not show on our mapping but will likely transition over time to upland forest species composition and dynamics, also characteristic of igapó loss. Our results show that floodplain forests are extremely sensitive to long-term downstream hydrological changes and disturbances resulting from the disruption of the natural flood pulse. Brazilian hydropower regulations should require that Amazon dam operations ensure the simulation of the natural flood-pulse, despite losses in energy production, to preserve the integrity of floodplain forest ecosystems and to mitigate impacts for the riverine populations.
Asunto(s)
Hidrología , Centrales Eléctricas , Ríos , Árboles , Brasil , Conservación de los Recursos NaturalesRESUMEN
The Brazil nut tree (Bertholletia excelsa) is an iconic and economically valuable species that dominates vast swathes of the Amazon Basin. This species seems to have been an important part of human subsistence strategies in the region from at least the Early Holocene, and its current distribution may be a legacy of past human settlement. Because B. excelsa is a long-lived pioneer tree it requires natural or human disturbances to increase light availability in the understory for a successful establishment. However, it remains unclear how the long-term population dynamics of this species have been shaped by pre-colonial and post-colonial human practices. Here, we use tree-ring analyses to look at changes in growing conditions over the past 400 years in a Brazil nut tree population in Central Amazonia. We identify changes in tree recruitment and growth rates associated not only with regional climatic variability, but also major political and socio-economic activities recorded by historical documents in the vicinity of Manaus. We demonstrate that the expansion of a post-colonial political center (Manaus) from the middle of the 18th century onwards coincided with a reduction in recruitment of B. excelsa. We argue that this hiatus suggests the interruption of indigenous management practices, probably due to the collapse of pre-Columbian societies. A second recruitment pulse, and unprecedented cycles of growth release and suppression, aligns with a shift to modern exploitation of the forest into the 20th century. Our findings shed light on how past histories of human-forest interactions can be revealed by the growth rings of trees in Amazonia. Future interdisciplinary analysis of these trees should enable more detailed investigation of how human forest management has changed in this part of the world, through pre-colonial, colonial, and industrial periods of human activity, with potential implications for conservation.
Asunto(s)
Bertholletia/crecimiento & desarrollo , Bosques , Actividades Humanas , Brasil , Conservación de los Recursos Naturales , Humanos , Dinámica PoblacionalRESUMEN
Isotopes in tropical trees rings can improve our understanding of tree responses to climate. We assessed how climate and growing conditions affect tree-ring oxygen and carbon isotopes (δ18OTR and δ13CTR) in four Amazon trees. We analysed within-ring isotope variation for two terra firme (non-flooded) and two floodplain trees growing at sites with varying seasonality. We find distinct intra-annual patterns of δ18OTR and δ13CTR driven mostly by seasonal variation in weather and source water δ18O. Seasonal variation in isotopes was lowest for the tree growing under the wettest conditions. Tree ring cellulose isotope models based on existing theory reproduced well observed within-ring variation with possible contributions of both stomatal and mesophyll conductance to variation in δ13CTR. Climate analysis reveal that terra firme δ18OTR signals were related to basin-wide precipitation, indicating a source water δ18O influence, while floodplain trees recorded leaf enrichment effects related to local climate. Thus, intrinsically different processes (source water vs leaf enrichment) affect δ18OTR in the two different species analysed. These differences are likely a result of both species-specific traits and of the contrasting growing conditions in the floodplains and terra firme environments. Simultaneous analysis of δ13CTR and δ18OTR supports this interpretation as it shows strongly similar intra-annual patterns for both isotopes in the floodplain trees arising from a common control by leaf stomatal conductance, while terra firme trees showed less covariation between the two isotopes. Our results are interesting from a plant physiological perspective and have implications for climate reconstructions as trees record intrinsically different processes.