Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 14: 1232367, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37662165

RESUMEN

The pathogenicity of intracellular plant pathogenic bacteria is associated with the action of pathogenicity factors/effectors, but their physiological roles for most phytoplasma species, including 'Candidiatus Phytoplasma solani' are unknown. Six putative pathogenicity factors/effectors from six different strains of 'Ca. P. solani' were selected by bioinformatic analysis. The way in which they manipulate the host cellular machinery was elucidated by analyzing Nicotiana benthamiana leaves after Agrobacterium-mediated transient transformation with the pathogenicity factor/effector constructs using confocal microscopy, pull-down, and co-immunoprecipitation, and enzyme assays. Candidate pathogenicity factors/effectors were shown to modulate plant carbohydrate metabolism and the ascorbate-glutathione cycle and to induce autophagosomes. PoStoSP06, PoStoSP13, and PoStoSP28 were localized in the nucleus and cytosol. The most active effector in the processes studied was PoStoSP06. PoStoSP18 was associated with an increase in phosphoglucomutase activity, whereas PoStoSP28, previously annotated as an antigenic membrane protein StAMP, specifically interacted with phosphoglucomutase. PoStoSP04 induced only the ascorbate-glutathione cycle along with other pathogenicity factors/effectors. Candidate pathogenicity factors/effectors were involved in reprogramming host carbohydrate metabolism in favor of phytoplasma own growth and infection. They were specifically associated with three distinct metabolic pathways leading to fructose-6-phosphate as an input substrate for glycolysis. The possible significance of autophagosome induction by PoStoSP28 is discussed.

2.
J Plant Dis Prot (2006) ; 129(2): 375-386, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35465453

RESUMEN

Pear decline, induced by the phytoplasma 'Candidatus Phytoplasma pyri', transmitted by pear psyllids, is one of the most devastating diseases on Pyrus communis in Europe and North America. Investigations of pear psyllids in 4 pear orchards in lower Austria showed the presence of Cacopsylla pyri, C. pyricola and C. pyrisuga at all locations. PCR analyses revealed overall phytoplasma infection rates for C. pyri of 5.4%, for C. pyricola, of 4.6%, for C. pyrisuga remigrants of 9.6% and for C. pyrisuga emigrants of 0%. The rates of PCR-positive C. pyri and C. pyricola individuals varied greatly in the course of the year, and the highest infection rates were observed in late summer, autumn and in late winter. In transmission experiments with healthy pear seedlings, winterform individuals of C. pyri and C. pyricola transmitted the pathogen to 19.2% (5 out of 26) and 4.8% (2 out of 41) of the test plants, respectively. The vectoring ability of C. pyrisuga was experimentally proven for the first time, and in transmission experiments with remigrants, 9.5% (2 out of 21) of the pear seedlings were infected. Our data indicate a significant risk of pathogen transmission in pear orchards during the greater part of the year, especially in late winter, early spring and autumn. Multilocus sequence analysis by aid of the genes aceF and imp allowed the discrimination between 15 phytoplasma types. Three so far undescribed aceF genotypes and four undescribed imp genotypes were identified. Supplementary Information: The online version contains supplementary material available at 10.1007/s41348-021-00526-y.

3.
Int J Mol Sci ; 22(7)2021 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-33805429

RESUMEN

Bois noir is the most widespread phytoplasma grapevine disease in Europe. It is associated with 'Candidatus Phytoplasma solani', but molecular interactions between the causal pathogen and its host plant are not well understood. In this work, we combined the analysis of high-throughput RNA-Seq and sRNA-Seq data with interaction network analysis for finding new cross-talks among pathways involved in infection of grapevine cv. Zweigelt with 'Ca. P. solani' in early and late growing seasons. While the early growing season was very dynamic at the transcriptional level in asymptomatic grapevines, the regulation at the level of small RNAs was more pronounced later in the season when symptoms developed in infected grapevines. Most differentially expressed small RNAs were associated with biotic stress. Our study also exposes the less-studied role of hormones in disease development and shows that hormonal balance was already perturbed before symptoms development in infected grapevines. Analysis at the level of communities of genes and mRNA-microRNA interaction networks revealed several new genes (e.g., expansins and cryptdin) that have not been associated with phytoplasma pathogenicity previously. These novel actors may present a new reference framework for research and diagnostics of phytoplasma diseases of grapevine.


Asunto(s)
Interacciones Huésped-Patógeno/genética , Phytoplasma/patogenicidad , ARN Mensajero/genética , Vitis/genética , Vitis/microbiología , Pared Celular/genética , Pared Celular/microbiología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , MicroARNs , Enfermedades de las Plantas/microbiología , Reguladores del Crecimiento de las Plantas/genética , Reguladores del Crecimiento de las Plantas/metabolismo , ARN de Planta , Análisis de Secuencia de ARN , Estrés Fisiológico/genética , Vitis/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA