RESUMEN
BACKGROUND: Breast cancer (BC) is the most common malignancy in women. Immunotherapy has revolutionized treatment options in many malignancies, and the introduction of immune checkpoint inhibition yielded beneficial results also in BC. However, many BC patients are ineligible for this T cell-based therapy, others do not respond or only briefly. Thus, there remains a high medical need for new therapies, particularly for triple-negative BC. CD276 (B7-H3) is overexpressed in several tumors on both tumor cells and tumor vessels, constituting a promising target for immunotherapy. METHODS: We analyzed tumor samples of 25 patients using immunohistochemistry to assess CD276 levels. The potential of CC-3, a novel bispecific CD276xCD3 antibody, for BC treatment was evaluated using various functional in vitro assays. RESULTS: Pronounced expression of CD276 was observed in all analyzed tumor samples including triple negative BC. In analyses with BC cells, CC-3 induced profound T cell activation, proliferation, and T cell memory subset formation. Moreover, treatment with CC-3 induced cytokine secretion and potent tumor cell lysis. CONCLUSION: Our findings characterize CD276 as promising target and preclinically document the therapeutic potential of CC-3 for BC treatment, providing a strong rationale for evaluation of CC-3 in BC patients in a clinical trial for which the recruitment has recently started.
Asunto(s)
Antígenos B7 , Neoplasias de la Mama , Inmunoterapia , Linfocitos T , Humanos , Femenino , Antígenos B7/metabolismo , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/terapia , Neoplasias de la Mama/patología , Inmunoterapia/métodos , Linfocitos T/inmunología , Línea Celular Tumoral , Persona de Mediana Edad , Activación de Linfocitos/inmunología , Proliferación Celular , Anciano , Citocinas/metabolismo , AdultoRESUMEN
PURPOSE: Collagen fleece grafting (CFG) is the recommended treatment for severe Peyronie's disease (PD) curvature (> 60°), but its efficacy in mild/moderate curvatures remains uncertain. This study evaluated CFG in patients with mild/moderate curvatures (< 60°) at risk of penile shortening or symptomatic plaque. METHODS: A retrospective review was conducted on patients who underwent surgical treatment for PD using plaque incision or partial plaque excision and CFG. Clinical parameters and complications were reviewed. Subgroup analysis was performed on patients with curvatures of > 60° and curvatures ≤ 60°. RESULTS: 89 patients with a median age of 59 years and a median curvature of 70 (20-90)° were identified. Dorsal curvature was predominant in 66% of cases, followed by lateral (16%), ventral (8%), and complex curvatures (10%). Partial plaque excision was performed in 98% of patients, with an average grafting area of 2.1 cm2; 71% had a singular penile plaque, while 29% presented two or more plaques. The comparison between patients with curvatures ≤ 60° and > 60° revealed no significant differences in mean operation time (86.3 vs. 94.4 min, p = 0.13) or in the incidence of postoperative complications, including glans necrosis, hypoesthesia, ecchymosis, bleeding, hematoma, infection, residual curvature, revision surgery, or pain. CONCLUSIONS: Early postoperative outcomes and complication rates following plaque incision or partial plaque excision and grafting with CFG were comparable in patients with mild/moderate and severe PD deformities. The technique may be a viable option with a similar risk profile for achieving penile straightening in selected PD cases, particularly when plication is not feasible.
RESUMEN
Rationale: Immune checkpoint inhibitor (ICI)-related pneumonitis is a serious autoimmune event affecting as many as 20% of patients with non-small-cell lung cancer (NSCLC), yet the factors underpinning its development in some patients and not others are poorly understood. Objectives: To investigate the role of autoantibodies and autoreactive T cells against surfactant-related proteins in the development of pneumonitis. Methods: The study cohort consisted of patients with NSCLC who provided blood samples before and during ICI treatment. Serum was used for proteomics analyses and to detect autoantibodies present during pneumonitis. T-cell stimulation assays and single-cell RNA sequencing were performed to investigate the specificity and functionality of peripheral autoreactive T cells. The findings were confirmed in a validation cohort comprising patients with NSCLC and patients with melanoma. Measurements and Main Results: Across both cohorts, patients in whom pneumonitis developed had higher pretreatment levels of immunoglobulin G autoantibodies targeting surfactant protein (SP)-B. At the onset of pneumonitis, these patients also exhibited higher frequencies of CD4+ IFN-γ-positive SP-B-specific T cells and expanding T-cell clonotypes recognizing this protein, accompanied by a proinflammatory serum proteomic profile. Conclusions: Our data suggest that the cooccurrence of SP-B-specific immunoglobulin G autoantibodies and CD4+ T cells is associated with the development of pneumonitis during ICI therapy. Pretreatment levels of these antibodies may represent a potential biomarker for an increased risk of developing pneumonitis, and on-treatment levels may provide a diagnostic aid.
Asunto(s)
Autoanticuerpos , Inhibidores de Puntos de Control Inmunológico , Neoplasias Pulmonares , Neumonía , Humanos , Femenino , Masculino , Persona de Mediana Edad , Inhibidores de Puntos de Control Inmunológico/efectos adversos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Anciano , Neumonía/inmunología , Neumonía/sangre , Autoanticuerpos/sangre , Autoanticuerpos/inmunología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/sangre , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Autoinmunidad/efectos de los fármacos , Autoinmunidad/inmunología , Proteína B Asociada a Surfactante Pulmonar/sangre , Proteína B Asociada a Surfactante Pulmonar/inmunología , Estudios de CohortesRESUMEN
Classic Hodgkin Lymphoma (cHL) is a tumor composed of rare malignant Hodgkin and Reed-Sternberg (HRS) cells nested within a T-cell rich inflammatory immune infiltrate. cHL is associated with Epstein-Barr Virus (EBV) in 25% of cases. The specific contributions of EBV to the pathogenesis of cHL remain largely unknown, in part due to technical barriers in dissecting the tumor microenvironment (TME) in high detail. Herein, we applied multiplexed ion beam imaging (MIBI) spatial pro-teomics on 6 EBV-positive and 14 EBV-negative cHL samples. We identify key TME features that distinguish between EBV-positive and EBV-negative cHL, including the relative predominance of memory CD8 T cells and increased T-cell dysfunction as a function of spatial proximity to HRS cells. Building upon a larger multi-institutional cohort of 22 EBV-positive and 24 EBV-negative cHL samples, we orthogonally validated our findings through a spatial multi-omics approach, coupling whole transcriptome capture with antibody-defined cell types for tu-mor and T-cell populations within the cHL TME. We delineate contrasting transcriptomic immunological signatures between EBV-positive and EBV-negative cases that differently impact HRS cell proliferation, tumor-immune interactions, and mecha-nisms of T-cell dysregulation and dysfunction. Our multi-modal framework enabled a comprehensive dissection of EBV-linked reorganization and immune evasion within the cHL TME, and highlighted the need to elucidate the cellular and molecular fac-tors of virus-associated tumors, with potential for targeted therapeutic strategies.
RESUMEN
The redirection of T cells has emerged as an attractive therapeutic principle in B cell non-Hodgkin lymphoma (B-NHL). However, a detailed characterization of lymphoma-infiltrating T cells across B-NHL entities is missing. Here we present an in-depth T cell reference map of nodal B-NHL, based on cellular indexing of transcriptomes and epitopes, T cell receptor sequencing, flow cytometry and multiplexed immunofluorescence applied to 101 lymph nodes from patients with diffuse large B cell, mantle cell, follicular or marginal zone lymphoma, and from healthy controls. This multimodal resource revealed quantitative and spatial aberrations of the T cell microenvironment across and within B-NHL entities. Quantitative differences in PD1+ TCF7- cytotoxic T cells, T follicular helper cells or IKZF3+ regulatory T cells were linked to their clonal expansion. The abundance of PD1+ TCF7- cytotoxic T cells was associated with poor survival. Our study portrays lymphoma-infiltrating T cells with unprecedented comprehensiveness and provides a unique resource for the investigation of lymphoma biology and prognosis.
Asunto(s)
Linfoma de Células B de la Zona Marginal , Linfocitos T , Humanos , Linfocitos T/patología , Linfocitos B/patología , Linfoma de Células B de la Zona Marginal/patología , Factor de Crecimiento Transformador beta , Microambiente TumoralRESUMEN
BACKGROUND: Several factors in glass slide (GS) preparation affect the quality and data volume of a digitized histological slide. In particular, reducing contamination and selecting the appropriate coverslip have the potential to significantly reduce scan time and data volume. GOALS: To objectify observations from our institute's digitization process to determine the impact of laboratory processes on the quality of digital histology slides. MATERIALS AND METHODS: Experiment 1: Scanning the GS before and after installation of a central console in the microtomy area to reduce dirt and statistical analysis of the determined parameters. Experiment 2: Re-coverslipping the GS (post diagnostics) with glass and film. Scanning the GS and statistical analysis of the collected parameters. CONCLUSION: The targeted restructuring in the laboratory process leads to a reduction of GS contamination. This causes a significant reduction in the amount of data generated and scanning time required for the digitized sections. Film as a coverslip material minimizes processing errors in contrast to glass. According to our estimation, all the above-mentioned points lead to considerable cost savings.
Asunto(s)
Procesamiento de Imagen Asistido por Computador , Microscopía , Técnicas Histológicas , MicrotomíaRESUMEN
Three-dimensional (3D) human skin equivalents have emerged as valuable tools in skin research, replacing animal experimentation and precluding the need for patient biopsies. In this study, we advanced 3D skin equivalents to model the inflammatory skin diseases atopic dermatitis and psoriasis by cytokine stimulation, and were successful in integrating TH1 T cells into skin models to develop an immunocompetent 3D psoriasis model. We performed in-depth histological and functional characterization of 3D skin equivalents and validated them in terms of tissue architecture, pathological changes, expression of antimicrobial peptides and Staphylococcus aureus colonization using 3D reconstruction by multiphoton microscopy and phenotyping by highly multiplexed 'co-detection by indexing' (CODEX) microscopy. We show that our skin equivalents have a structural architecture with a well-developed dermis and epidermis, thus resembling human skin. In addition, the skin models of atopic dermatitis and psoriasis show several phenotypic features of inflammatory skin disease, including disturbed epidermal differentiation and alterations in the expression of epidermal barrier genes and antimicrobial peptides, and can be reliably used to test novel treatment strategies. Therefore, these 3D equivalents will be a valuable tool in experimental dermatological research.
Asunto(s)
Dermatitis Atópica , Psoriasis , Animales , Humanos , Piel , Epidermis , Péptidos AntimicrobianosRESUMEN
Harnessing the immune system to eradicate tumors requires identification and targeting of tumor antigens, including tumor-specific neoantigens and tumor-associated self-antigens. Tumor-associated antigens are subject to existing immune tolerance, which must be overcome by immunotherapies. Despite many novel immunotherapies reaching clinical trials, inducing self-antigen-specific immune responses remains challenging. Here, we systematically investigate viral-vector-based cancer vaccines encoding a tumor-associated self-antigen (TRP2) for the treatment of established melanomas in preclinical mouse models, alone or in combination with adoptive T cell therapy. We reveal that, unlike foreign antigens, tumor-associated antigens require replication of lymphocytic choriomeningitis virus (LCMV)-based vectors to break tolerance and induce effective antigen-specific CD8+ T cell responses. Immunization with a replicating LCMV vector leads to complete tumor rejection when combined with adoptive TRP2-specific T cell transfer. Importantly, immunization with replicating vectors leads to extended antigen persistence in secondary lymphoid organs, resulting in efficient T cell priming, which renders previously "cold" tumors open to immune infiltration and reprograms the tumor microenvironment to "hot." Our findings have important implications for the design of next-generation immunotherapies targeting solid cancers utilizing viral vectors and adoptive cell transfer.
Asunto(s)
Vacunas contra el Cáncer , Neoplasias , Ratones , Animales , Virus de la Coriomeningitis Linfocítica/genética , Linfocitos T CD8-positivos , Neoplasias/tratamiento farmacológico , Antígenos de Neoplasias/genética , Autoantígenos , Microambiente TumoralRESUMEN
Oral squamous cell carcinoma (OSCC), a prevalent and aggressive neoplasm, poses a significant challenge due to poor prognosis and limited prognostic biomarkers. Leveraging highly multiplexed imaging mass cytometry, we investigated the tumor immune microenvironment (TIME) in OSCC biopsies, characterizing immune cell distribution and signaling activity at the tumor-invasive front. Our spatial subsetting approach standardized cellular populations by tissue zone, improving feature reproducibility and revealing TIME patterns accompanying loss-of-differentiation. Employing a machine-learning pipeline combining reliable feature selection with multivariable modeling, we achieved accurate histological grade classification (AUC = 0.88). Three model features correlated with clinical outcomes in an independent cohort: granulocyte MAPKAPK2 signaling at the tumor front, stromal CD4+ memory T cell size, and the distance of fibroblasts from the tumor border. This study establishes a robust modeling framework for distilling complex imaging data, uncovering sentinel characteristics of the OSCC TIME to facilitate prognostic biomarkers discovery for recurrence risk stratification and immunomodulatory therapy development.
RESUMEN
Identifying the cells from which cancers arise is critical for understanding the molecular underpinnings of tumor evolution. To determine whether stem/progenitor cells can serve as cells of origin, we created a Msi2-CreERT2 knock-in mouse. When crossed to CAG-LSL-MycT58A mice, Msi2-CreERT2 mice developed multiple pancreatic cancer subtypes: ductal, acinar, adenosquamous, and rare anaplastic tumors. Combining single-cell genomics with computational analysis of developmental states and lineage trajectories, we demonstrate that MYC preferentially triggers transformation of the most immature MSI2+ pancreas cells into multi-lineage pre-cancer cells. These pre-cancer cells subsequently diverge to establish pancreatic cancer subtypes by activating distinct transcriptional programs and large-scale genomic changes, and enforced expression of specific signals like Ras can redirect subtype specification. This study shows that multiple pancreatic cancer subtypes can arise from a common pool of MSI2+ cells and provides a powerful model to understand and control the programs that shape divergent fates in pancreatic cancer.
Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Ratones , Animales , Carcinoma Ductal Pancreático/patología , Neoplasias Pancreáticas/patologíaRESUMEN
[This corrects the article DOI: 10.3389/fbinf.2023.1159381.].
RESUMEN
Thymic carcinomas are exceedingly rare and very aggressive malignancies of the anterior mediastinum. While thymomas exhibit a high association with paraneoplastic syndromes, these phenomena are a rarity in thymic carcinomas. In general, acanthotic syndromes such as acroceratosis neoplastica and acanthosis nigricans maligna are commonly observed as paraneoplastic phenomena in patients with carcinomas. In contrast, psoriasis vulgaris, another acanthotic disease, rarely occurs as a paraneoplasia. We report the case of a 36-year-old patient with progressive thymic carcinoma (undifferentiated carcinoma, T3N2M1a) and paraneoplastic psoriasis occurring ten months before the initial diagnosis of the carcinoma. Over the course of the disease, new psoriatic flares heralded relapse or progression of the carcinoma. To our knowledge, this is the first reported case of paraneoplastic psoriasis in thymic carcinoma.
RESUMEN
Staphylococcus aureus is the most common cause of bacterial skin infections in humans, including patients with atopic dermatitis (AD). Polymorphonuclear neutrophils (PMNs) are the first cells to infiltrate an infection site, where they usually provide an effective first line of defense, including neutrophil extracellular trap (NET) formation. Here, we show that infiltrating PMNs in inflamed human and mouse skin enhance S. aureus skin colonization and persistence. Mechanistically, we demonstrate that a crosstalk between keratinocytes and PMNs results in enhanced NET formation upon S. aureus infection, which in turn induces oxidative stress and expression of danger-associated molecular patterns such as high-mobility-group-protein B1 (HMGB1) in keratinocytes. In turn, HMGB1 enhances S. aureus skin colonization and persistence by promoting skin barrier dysfunctions by the downregulation of epidermal barrier genes. Using patient material, we show that patients with AD exhibit enhanced presence of PMNs, NETs, and HMGB1 in the skin, demonstrating the clinical relevance of our finding.
Asunto(s)
Dermatitis Atópica , Trampas Extracelulares , Proteína HMGB1 , Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Animales , Ratones , Humanos , Staphylococcus aureus , Proteína HMGB1/genética , Regulación hacia Abajo/genética , Piel/microbiología , Dermatitis Atópica/etiología , Infecciones Estafilocócicas/microbiologíaRESUMEN
The spatial organization of various cell types within the tissue microenvironment is a key element for the formation of physiological and pathological processes, including cancer and autoimmune diseases. Here, we present S3-CIMA, a weakly supervised convolutional neural network model that enables the detection of disease-specific microenvironment compositions from high-dimensional proteomic imaging data. We demonstrate the utility of this approach by determining cancer outcome- and cellular-signaling-specific spatial cell-state compositions in highly multiplexed fluorescence microscopy data of the tumor microenvironment in colorectal cancer. Moreover, we use S3-CIMA to identify disease-onset-specific changes of the pancreatic tissue microenvironment in type 1 diabetes using imaging mass-cytometry data. We evaluated S3-CIMA as a powerful tool to discover novel disease-associated spatial cellular interactions from currently available and future spatial biology datasets.
RESUMEN
Since its introduction into the field of oncology, deep learning (DL) has impacted clinical discoveries and biomarker predictions. DL-driven discoveries and predictions in oncology are based on a variety of biological data such as genomics, proteomics, and imaging data. DL-based computational frameworks can predict genetic variant effects on gene expression, as well as protein structures based on amino acid sequences. Furthermore, DL algorithms can capture valuable mechanistic biological information from several spatial "omics" technologies, such as spatial transcriptomics and spatial proteomics. Here, we review the impact that the combination of artificial intelligence (AI) with spatial omics technologies has had on oncology, focusing on DL and its applications in biomedical image analysis, encompassing cell segmentation, cell phenotype identification, cancer prognostication, and therapy prediction. We highlight the advantages of using highly multiplexed images (spatial proteomics data) compared to single-stained, conventional histopathological ("simple") images, as the former can provide deep mechanistic insights that cannot be obtained by the latter, even with the aid of explainable AI. Furthermore, we provide the reader with the advantages/disadvantages of DL-based pipelines used in preprocessing highly multiplexed images (cell segmentation, cell type annotation). Therefore, this review also guides the reader to choose the DL-based pipeline that best fits their data. In conclusion, DL continues to be established as an essential tool in discovering novel biological mechanisms when combined with technologies such as highly multiplexed tissue imaging data. In balance with conventional medical data, its role in clinical routine will become more important, supporting diagnosis and prognosis in oncology, enhancing clinical decision-making, and improving the quality of care for patients. Since its introduction into the field of oncology, deep learning (DL) has impacted clinical discoveries and biomarker predictions. DL-driven discoveries and predictions in oncology are based on a variety of biological data such as genomics, proteomics, and imaging data. DL-based computational frameworks can predict genetic variant effects on gene expression, as well as protein structures based on amino acid sequences. Furthermore, DL algorithms can capture valuable mechanistic biological information from several spatial "omics" technologies, such as spatial transcriptomics and spatial proteomics. Here, we review the impact that the combination of artificial intelligence (AI) with spatial omics technologies has had on oncology, focusing on DL and its applications in biomedical image analysis, encompassing cell segmentation, cell phenotype identification, cancer prognostication, and therapy prediction. We highlight the advantages of using highly multiplexed images (spatial proteomics data) compared to single-stained, conventional histopathological ("simple") images, as the former can provide deep mechanistic insights that cannot be obtained by the latter, even with the aid of explainable AI. Furthermore, we provide the reader with the advantages/disadvantages of the DL-based pipelines used in preprocessing the highly multiplexed images (cell segmentation, cell type annotation). Therefore, this review also guides the reader to choose the DL-based pipeline that best fits their data. In conclusion, DL continues to be established as an essential tool in discovering novel biological mechanisms when combined with technologies such as highly multiplexed tissue imaging data. In balance with conventional medical data, its role in clinical routine will become more important, supporting diagnosis and prognosis in oncology, enhancing clinical decision-making, and improving the quality of care for patients.
RESUMEN
The intestine is a complex organ that promotes digestion, extracts nutrients, participates in immune surveillance, maintains critical symbiotic relationships with microbiota and affects overall health1. The intesting has a length of over nine metres, along which there are differences in structure and function2. The localization of individual cell types, cell type development trajectories and detailed cell transcriptional programs probably drive these differences in function. Here, to better understand these differences, we evaluated the organization of single cells using multiplexed imaging and single-nucleus RNA and open chromatin assays across eight different intestinal sites from nine donors. Through systematic analyses, we find cell compositions that differ substantially across regions of the intestine and demonstrate the complexity of epithelial subtypes, and find that the same cell types are organized into distinct neighbourhoods and communities, highlighting distinct immunological niches that are present in the intestine. We also map gene regulatory differences in these cells that are suggestive of a regulatory differentiation cascade, and associate intestinal disease heritability with specific cell types. These results describe the complexity of the cell composition, regulation and organization for this organ, and serve as an important reference map for understanding human biology and disease.
Asunto(s)
Intestinos , Análisis de la Célula Individual , Humanos , Diferenciación Celular/genética , Cromatina/genética , Células Epiteliales/citología , Células Epiteliales/metabolismo , Regulación de la Expresión Génica , Mucosa Intestinal/citología , Intestinos/citología , Intestinos/inmunología , Análisis de Expresión Génica de una Sola CélulaRESUMEN
Cellular organization and functions encompass multiple scales in vivo. Emerging high-plex imaging technologies are limited in resolving subcellular biomolecular features. Expansion Microscopy (ExM) and related techniques physically expand samples for enhanced spatial resolution, but are challenging to be combined with high-plex imaging technologies to enable integrative multiscaled tissue biology insights. Here, we introduce Expand and comPRESS hydrOgels (ExPRESSO), an ExM framework that allows high-plex protein staining, physical expansion, and removal of water, while retaining the lateral tissue expansion. We demonstrate ExPRESSO imaging of archival clinical tissue samples on Multiplexed Ion Beam Imaging and Imaging Mass Cytometry platforms, with detection capabilities of > 40 markers. Application of ExPRESSO on archival human lymphoid and brain tissues resolved tissue architecture at the subcellular level, particularly that of the blood-brain barrier. ExPRESSO hence provides a platform for extending the analysis compatibility of hydrogel-expanded biospecimens to mass spectrometry, with minimal modifications to protocols and instrumentation.
Asunto(s)
Microscopía , Proteínas , Humanos , Vacio , Microscopía/métodos , Hidrogeles/químicaRESUMEN
Esophageal adenocarcinoma arises from Barrett's esophagus, a precancerous metaplastic replacement of squamous by columnar epithelium in response to chronic inflammation. Multi-omics profiling, integrating single-cell transcriptomics, extracellular matrix proteomics, tissue-mechanics and spatial proteomics of 64 samples from 12 patients' paths of progression from squamous epithelium through metaplasia, dysplasia to adenocarcinoma, revealed shared and patient-specific progression characteristics. The classic metaplastic replacement of epithelial cells was paralleled by metaplastic changes in stromal cells, ECM and tissue stiffness. Strikingly, this change in tissue state at metaplasia was already accompanied by appearance of fibroblasts with characteristics of carcinoma-associated fibroblasts and of an NK cell-associated immunosuppressive microenvironment. Thus, Barrett's esophagus progresses as a coordinated multi-component system, supporting treatment paradigms that go beyond targeting cancerous cells to incorporating stromal reprogramming.
RESUMEN
Targeted therapies for cutaneous T-cell lymphoma (CTCL) are limited and curative approaches are lacking. Furthermore, relapses and drug induced side effects are major challenges in the therapeutic management of patients with CTCL, creating an urgent need for new and effective therapies. Pathologic constitutive NF-κB activity leads to apoptosis resistance in CTCL cells and, thus, represents a promising therapeutic target in CTCL. In a preclinical study we showed the potential of dimethyl fumarate (DMF) to block NF-κB and, specifically, kill CTCL cells. To translate these findings to applications in a clinical setting, we performed a multicentric phase 2 study evaluating oral DMF therapy in 25 patients with CTCL stages Ib to IV over 24 weeks (EudraCT number 2014-000924-11/NCT number NCT02546440). End points were safety and efficacy. We evaluated skin involvement (using a modified severity weighted assessment tool [mSWAT]), pruritus, quality of life, and blood involvement, if applicable, as well as translational data. Upon skin analysis, 7 of 23 (30.4%) patients showed a response with >50% reduction in the mSWAT score. Patients with high tumor burden in the skin and blood responded best to DMF therapy. Although not generally significant, DMF also improved pruritus in several patients. Response in the blood was mixed, but we confirmed the NF-κB-inhibiting mechanism of DMF in the blood. The overall tolerability of the DMF therapy was very favorable, with mostly mild side effects. In conclusion, our study presents DMF as an effective and excellently tolerable therapeutic option in CTCL to be further evaluated in a phase 3 study or real-life patient care as well as in combination therapies. This trial was registered at www.clinicaltrials.gov as #NCT02546440.