Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Hypertension ; 81(3): 561-571, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38354270

RESUMEN

BACKGROUND: Small arteries exhibit resting tone, a partially contracted state that maintains arterial blood pressure. In arterial smooth muscle cells, potassium channels control contraction and relaxation. Perivascular adipose tissue (PVAT) has been shown to exert anticontractile effects on the blood vessels. However, the mechanisms by which PVAT signals small arteries, and their relevance remain largely unknown. We aimed to uncover key molecular components in adipose-vascular coupling. METHODS: A wide spectrum of genetic mouse models targeting Kcnq3, Kcnq4, and Kcnq5 genes (Kcnq3-/-, Kcnq4-/-, Kcnq5-/-, Kcnq5dn/dn, Kcnq4-/-/Kcnq5dn/dn, and Kcnq4-/-/Kcnq5-/-), telemetry blood pressure measurements, targeted lipidomics, RNA-Seq profiling, wire-myography, patch-clamp, and sharp-electrode membrane potential measurements was used. RESULTS: We show that PVAT causes smooth muscle cell KV7.5 family of voltage-gated potassium (K+) channels to hyperpolarize the membrane potential. This effect relaxes small arteries and regulates blood pressure. Oxygenation of polyunsaturated fats generates oxylipins, a superclass of lipid mediators. We identified numerous oxylipins released by PVAT, which potentiate vasodilatory action in small arteries by opening smooth muscle cell KV7.5 family of voltage-gated potassium (K+) channels. CONCLUSIONS: Our results reveal a key molecular function of the KV7.5 family of voltage-gated potassium (K+) channels in the adipose-vascular coupling, translating PVAT signals, particularly oxylipins, to the central physiological function of vasoregulation. This novel pathway opens new therapeutic perspectives.


Asunto(s)
Oxilipinas , Vasodilatación , Animales , Ratones , Tejido Adiposo , Canales de Potasio KCNQ/genética , Canales de Potasio KCNQ/metabolismo , Oxilipinas/metabolismo , Potasio/metabolismo
2.
Nat Commun ; 12(1): 4801, 2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34376649

RESUMEN

Hippocampal pyramidal cells encode an animal's location by single action potentials and complex spike bursts. These elementary signals are believed to play distinct roles in memory consolidation. The timing of single spikes and bursts is determined by intrinsic excitability and theta oscillations (5-10 Hz). Yet contributions of these dynamics to place fields remain elusive due to the lack of methods for specific modification of burst discharge. In mice lacking Kcnq3-containing M-type K+ channels, we find that pyramidal cell bursts are less coordinated by the theta rhythm than in controls during spatial navigation, but not alert immobility. Less modulated bursts are followed by an intact post-burst pause of single spike firing, resulting in a temporal discoordination of network oscillatory and intrinsic excitability. Place fields of single spikes in one- and two-dimensional environments are smaller in the mutant. Optogenetic manipulations of upstream signals reveal that neither medial septal GABA-ergic nor cholinergic inputs alone, but rather their joint activity, is required for entrainment of bursts. Our results suggest that altered representations by bursts and single spikes may contribute to deficits underlying cognitive disabilities associated with KCNQ3-mutations in humans.


Asunto(s)
Potenciales de Acción/fisiología , Canal de Potasio KCNQ3/fisiología , Células Piramidales/fisiología , Ritmo Teta/fisiología , Animales , Hipocampo/citología , Humanos , Canal de Potasio KCNQ3/genética , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Optogenética/métodos
3.
J Biol Chem ; 291(11): 5566-5575, 2016 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-26733196

RESUMEN

M-current-mediating KCNQ (Kv7) channels play an important role in regulating the excitability of neuronal cells, as highlighted by mutations in Kcnq2 and Kcnq3 that underlie certain forms of epilepsy. In addition to their expression in brain, KCNQ2 and -3 are also found in the somatosensory system. We have now detected both KCNQ2 and KCNQ3 in a subset of dorsal root ganglia neurons that correspond to D-hair Aδ-fibers and demonstrate KCNQ3 expression in peripheral nerve endings of cutaneous D-hair follicles. Electrophysiological recordings from single D-hair afferents from Kcnq3(-/-) mice showed increased firing frequencies in response to mechanical ramp-and-hold stimuli. This effect was particularly pronounced at slow indentation velocities. Additional reduction of KCNQ2 expression further increased D-hair sensitivity. Together with previous work on the specific role of KCNQ4 in rapidly adapting skin mechanoreceptors, our results show that different KCNQ isoforms are specifically expressed in particular subsets of mechanosensory neurons and modulate their sensitivity directly in sensory nerve endings.


Asunto(s)
Folículo Piloso/inervación , Canal de Potasio KCNQ2/metabolismo , Canal de Potasio KCNQ3/metabolismo , Mecanorreceptores/metabolismo , Piel/inervación , Animales , Células Cultivadas , Ganglios Espinales/citología , Ganglios Espinales/metabolismo , Eliminación de Gen , Expresión Génica , Canal de Potasio KCNQ2/genética , Canal de Potasio KCNQ3/genética , Mecanorreceptores/citología , Ratones , Ratones Endogámicos C57BL
4.
J Biol Chem ; 286(26): 22711-5, 2011 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-21576244

RESUMEN

Insulin-degrading enzyme (IDE) is a Zn(2+) metalloprotease with a characteristic inverted catalytic motif. IDE is ubiquitously expressed and degrades peptide substrates including insulin, endorphin, and the amyloid-ß peptide. Although IDE is mainly expressed in the cytosol, it can also be found on the cell surface and in secreted form in extracellular fluids. As IDE lacks a characteristic signal sequence that targets the protein to the classical secretory pathway, release of the enzyme involves non-conventional mechanisms. However, functional domains of IDE involved in its secretion remain elusive. By bioinformatical, biochemical, and cell biological methods, we identified a novel amino acid motif ((853)EKPPHY(858)) close to the C terminus of IDE and characterized its function in the non-conventional secretion of the protein. Because of its close homology to an amino acid sequence found in bacterial proteins belonging to the SlyX family, we propose to call it the SlyX motif. Mutagenesis revealed that deletion of this motif strongly decreased the release of IDE, whereas deletion of a potential microbody-targeting signal at the extreme C terminus had little effect on secretion. The combined data indicate that the non-conventional secretion of IDE is regulated by the newly identified SlyX motif.


Asunto(s)
Regulación Enzimológica de la Expresión Génica/fisiología , Insulisina/metabolismo , Secuencias de Aminoácidos , Animales , Células COS , Chlorocebus aethiops , Insulisina/genética , Ratones , Mutagénesis , Estructura Terciaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...