Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PLoS Genet ; 11(11): e1005655, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26544867

RESUMEN

Individuals with Cornelia de Lange Syndrome (CdLS) display diverse developmental deficits, including slow growth, multiple limb and organ abnormalities, and intellectual disabilities. Severely-affected individuals most often have dominant loss-of-function mutations in the Nipped-B-Like (NIPBL) gene, and milder cases often have missense or in-frame deletion mutations in genes encoding subunits of the cohesin complex. Cohesin mediates sister chromatid cohesion to facilitate accurate chromosome segregation, and NIPBL is required for cohesin to bind to chromosomes. Individuals with CdLS, however, do not display overt cohesion or segregation defects. Rather, studies in human cells and model organisms indicate that modest decreases in NIPBL and cohesin activity alter the transcription of many genes that regulate growth and development. Sister chromatid cohesion factors, including the Nipped-B ortholog of NIPBL, are also critical for gene expression and development in Drosophila melanogaster. Here we describe how a modest reduction in Nipped-B activity alters growth and neurological function in Drosophila. These studies reveal that Nipped-B heterozygous mutant Drosophila show reduced growth, learning, and memory, and altered circadian rhythms. Importantly, the growth deficits are not caused by changes in systemic growth controls, but reductions in cell number and size attributable in part to reduced expression of myc (diminutive) and other growth control genes. The learning, memory and circadian deficits are accompanied by morphological abnormalities in brain structure. These studies confirm that Drosophila Nipped-B mutants provide a useful model for understanding CdLS, and provide new insights into the origins of birth defects.


Asunto(s)
Proteínas de Unión al ADN/genética , Síndrome de Cornelia de Lange/genética , Proteínas de Drosophila/genética , Drosophila/crecimiento & desarrollo , Drosophila/fisiología , Modelos Biológicos , Mutación , Animales , Drosophila/genética , Heterocigoto
2.
Am J Med Genet A ; 164A(6): 1384-93, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24504889

RESUMEN

Cornelia de Lange syndrome (CdLS) is the prototype for the cohesinopathy disorders that have mutations in genes associated with the cohesin subunit in all cells. Roberts syndrome is the next most common cohesinopathy. In addition to the developmental implications of cohesin biology, there is much translational and basic research, with progress towards potential treatment for these conditions. Clinically, there are many issues in CdLS faced by the individual, parents and caretakers, professionals, and schools. The following abstracts are presentations from the 5th Cornelia de Lange Syndrome Scientific and Educational Symposium on June 20-21, 2012, in conjunction with the Cornelia de Lange Syndrome Foundation National Meeting, Lincolnshire, IL. The research committee of the CdLS Foundation organizes the meeting, reviews and accepts abstracts and subsequently disseminates the information to the families. In addition to the basic science and clinical discussions, there were educationally-focused talks related to practical aspects of management at home and in school. AMA CME credits were provided by Greater Baltimore Medical Center, Baltimore, MD.


Asunto(s)
Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona/genética , Anomalías Craneofaciales/genética , Síndrome de Cornelia de Lange/genética , Ectromelia/genética , Hipertelorismo/genética , Proteínas/genética , Acetiltransferasas/genética , Envejecimiento Prematuro/genética , Animales , Cromatina/genética , Trastornos del Conocimiento/genética , Drosophila , Conducta Alimentaria , Haploinsuficiencia , Cardiopatías Congénitas/embriología , Cardiopatías Congénitas/genética , Humanos , Ratones , Modelos Animales , Proteínas del Grupo Polycomb/genética , Biosíntesis de Proteínas/genética , Homeostasis del Telómero , Pez Cebra , Cohesinas
3.
G3 (Bethesda) ; 3(10): 1785-94, 2013 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-23979932

RESUMEN

The cohesin protein complex functionally interacts with Polycomb group (PcG) silencing proteins to control expression of several key developmental genes, such as the Drosophila Enhancer of split gene complex [E(spl)-C]. The E(spl)-C contains 12 genes that inhibit neural development. In a cell line derived from the central nervous system, cohesin and the PRC1 PcG protein complex bind and repress E (spl)-C transcription, but the repression mechanisms are unknown. The genes in the E(spl)-C are directly activated by the Notch receptor. Here we show that depletion of cohesin or PRC1 increases binding of the Notch intracellular fragment to genes in the E(spl)-C, correlating with increased transcription. The increased transcription likely reflects both direct effects of cohesin and PRC1 on RNA polymerase activity at the E(spl)-C, and increased expression of Notch ligands. By chromosome conformation capture we find that the E(spl)-C is organized into a self-interactive architectural domain that is co-extensive with the region that binds cohesin and PcG complexes. The self-interactive architecture is formed independently of cohesin or PcG proteins. We posit that the E(spl)-C architecture dictates where cohesin and PcG complexes bind and act when they are recruited by as yet unidentified factors, thereby controlling the E(spl)-C as a coordinated domain.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/genética , Proteínas del Grupo Polycomb/metabolismo , Receptores Notch/metabolismo , Proteínas Represoras/metabolismo , Animales , Línea Celular , Ensamble y Desensamble de Cromatina , Cromosomas de Insectos/metabolismo , Drosophila/metabolismo , Unión Proteica , Activación Transcripcional
4.
PLoS Genet ; 9(6): e1003560, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23818863

RESUMEN

Cohesin is crucial for proper chromosome segregation but also regulates gene transcription and organism development by poorly understood mechanisms. Using genome-wide assays in Drosophila developing wings and cultured cells, we find that cohesin functionally interacts with Polycomb group (PcG) silencing proteins at both silenced and active genes. Cohesin unexpectedly facilitates binding of Polycomb Repressive Complex 1 (PRC1) to many active genes, but their binding is mutually antagonistic at silenced genes. PRC1 depletion decreases phosphorylated RNA polymerase II and mRNA at many active genes but increases them at silenced genes. Depletion of cohesin reduces long-range interactions between Polycomb Response Elements in the invected-engrailed gene complex where it represses transcription. These studies reveal a previously unrecognized role for PRC1 in facilitating productive gene transcription and provide new insights into how cohesin and PRC1 control development.


Asunto(s)
Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona/genética , Segregación Cromosómica/genética , Drosophila melanogaster/genética , Proteínas del Grupo Polycomb/genética , Animales , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Regulación del Desarrollo de la Expresión Génica , Silenciador del Gen , Complejo Represivo Polycomb 1/genética , Proteínas del Grupo Polycomb/metabolismo , Unión Proteica , Transcripción Genética , Alas de Animales/crecimiento & desarrollo , Alas de Animales/metabolismo , Cohesinas
5.
PLoS Genet ; 9(3): e1003382, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23555293

RESUMEN

Cohesin is a well-known mediator of sister chromatid cohesion, but it also influences gene expression and development. These non-canonical roles of cohesin are not well understood, but are vital: gene expression and development are altered by modest changes in cohesin function that do not disrupt chromatid cohesion. To clarify cohesin's roles in transcription, we measured how cohesin controls RNA polymerase II (Pol II) activity by genome-wide chromatin immunoprecipitation and precision global run-on sequencing. On average, cohesin-binding genes have more transcriptionally active Pol II and promoter-proximal Pol II pausing than non-binding genes, and are more efficient, producing higher steady state levels of mRNA per transcribing Pol II complex. Cohesin depletion frequently decreases gene body transcription but increases pausing at cohesin-binding genes, indicating that cohesin often facilitates transition of paused Pol II to elongation. In many cases, this likely reflects a role for cohesin in transcriptional enhancer function. Strikingly, more than 95% of predicted extragenic enhancers bind cohesin, and cohesin depletion can reduce their association with Pol II, indicating that cohesin facilitates enhancer-promoter contact. Cohesin depletion decreases the levels of transcriptionally engaged Pol II at the promoters of most genes that don't bind cohesin, suggesting that cohesin controls expression of one or more broadly acting general transcription factors. The multiple transcriptional roles of cohesin revealed by these studies likely underlie the growth and developmental deficits caused by minor changes in cohesin activity.


Asunto(s)
Proteínas de Ciclo Celular , Proteínas Cromosómicas no Histona , Proteínas de Unión al ADN , Regiones Promotoras Genéticas , ARN Polimerasa II , Animales , Técnicas de Cultivo de Célula , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/microbiología , Regulación del Desarrollo de la Expresión Génica , Genoma de los Insectos , Histonas/genética , Histonas/metabolismo , Unión Proteica , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética , Cohesinas
6.
PLoS Genet ; 8(8): e1002878, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22912596

RESUMEN

dMi-2 is a highly conserved ATP-dependent chromatin-remodeling factor that regulates transcription and cell fates by altering the structure or positioning of nucleosomes. Here we report an unanticipated role for dMi-2 in the regulation of higher-order chromatin structure in Drosophila. Loss of dMi-2 function causes salivary gland polytene chromosomes to lose their characteristic banding pattern and appear more condensed than normal. Conversely, increased expression of dMi-2 triggers decondensation of polytene chromosomes accompanied by a significant increase in nuclear volume; this effect is relatively rapid and is dependent on the ATPase activity of dMi-2. Live analysis revealed that dMi-2 disrupts interactions between the aligned chromatids of salivary gland polytene chromosomes. dMi-2 and the cohesin complex are enriched at sites of active transcription; fluorescence-recovery after photobleaching (FRAP) assays showed that dMi-2 decreases stable association of cohesin with polytene chromosomes. These findings demonstrate that dMi-2 is an important regulator of both chromosome condensation and cohesin binding in interphase cells.


Asunto(s)
Adenosina Trifosfatasas/genética , Autoantígenos/genética , Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Nucleosomas/genética , Cromosomas Politénicos/genética , Adenosina Trifosfatasas/metabolismo , Animales , Autoantígenos/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cromátides , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Recuperación de Fluorescencia tras Fotoblanqueo , Interfase/genética , Unión Proteica , Glándulas Salivales/citología , Glándulas Salivales/metabolismo , Cohesinas
7.
Curr Biol ; 21(19): 1624-34, 2011 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-21962715

RESUMEN

BACKGROUND: The cohesin complex mediates sister chromatid cohesion and regulates gene transcription. Prior studies show that cohesin preferentially binds and regulates genes that control growth and differentiation and that even mild disruption of cohesin function alters development. Here we investigate how cohesin specifically recognizes and regulates genes that control development in Drosophila. RESULTS: Genome-wide analyses show that cohesin selectively binds genes in which RNA polymerase II (Pol II) pauses just downstream of the transcription start site. These genes often have GAGA factor (GAF) binding sites 100 base pairs (bp) upstream of the start site, and GT dinucleotide repeats 50 to 800 bp downstream in the plus strand. They have low levels of histone H3 lysine 36 trimethylation (H3K36me3) associated with transcriptional elongation, even when highly transcribed. Cohesin depletion does not reduce polymerase pausing, in contrast to depletion of the NELF (negative elongation factor) pausing complex. Cohesin, NELF, and Spt5 pausing and elongation factor knockdown experiments indicate that cohesin does not inhibit binding of polymerase to promoters or physically block transcriptional elongation, but at genes that it strongly represses, it hinders transition of paused polymerase to elongation at a step distinct from those controlled by Spt5 and NELF. CONCLUSIONS: Our findings argue that cohesin and pausing factors are recruited independently to the same genes, perhaps by GAF and the GT repeats, and that their combined action determines the level of actively elongating RNA polymerase.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/genética , Drosophila/metabolismo , Regulación del Desarrollo de la Expresión Génica , ARN Polimerasa II/metabolismo , Animales , Sitios de Unión , Inmunoprecipitación de Cromatina , Proteínas de Unión al ADN/metabolismo , Técnicas de Silenciamiento del Gen , Histonas/genética , Histonas/metabolismo , Metilación , Análisis de Secuencia de ADN , Factores de Transcripción/metabolismo , Transcripción Genética , Factores de Elongación Transcripcional/metabolismo , Cohesinas
8.
PLoS One ; 4(7): e6202, 2009 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-19587787

RESUMEN

The cohesin protein complex was first recognized for holding sister chromatids together and ensuring proper chromosome segregation. Cohesin also regulates gene expression, but the mechanisms are unknown. Cohesin associates preferentially with active genes, and is generally absent from regions in which histone H3 is methylated by the Enhancer of zeste [E(z)] Polycomb group silencing protein. Here we show that transcription is hypersensitive to cohesin levels in two exceptional cases where cohesin and the E(z)-mediated histone methylation simultaneously coat the entire Enhancer of split and invected-engrailed gene complexes in cells derived from Drosophila central nervous system. These gene complexes are modestly transcribed, and produce seven of the twelve transcripts that increase the most with cohesin knockdown genome-wide. Cohesin mutations alter eye development in the same manner as increased Enhancer of split activity, suggesting that similar regulation occurs in vivo. We propose that cohesin helps restrain transcription of these gene complexes, and that deregulation of similarly cohesin-hypersensitive genes may underlie developmental deficits in Cornelia de Lange syndrome.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Proteínas de Ciclo Celular/fisiología , Cromátides/fisiología , Proteínas Cromosómicas no Histona/fisiología , Proteínas de Drosophila/genética , Drosophila/genética , Regulación de la Expresión Génica/fisiología , Proteínas de Homeodominio/genética , Proteínas Represoras/genética , Factores de Transcripción/genética , Animales , Proteínas de Ciclo Celular/genética , Línea Celular , Proteínas Cromosómicas no Histona/genética , Técnicas de Silenciamiento del Gen , Mutación , Fenotipo , Interferencia de ARN , Cohesinas
9.
Bioessays ; 30(8): 715-8, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18623068

RESUMEN

The cohesin complex is best known for its role in sister chromatid cohesion. Over the past few years, it has become apparent that cohesin also regulates gene expression, but the mechanisms by which it does so are unknown. Recently, three groups mapped numerous cohesin-binding sites in mammalian chromosomes and found substantial overlap with the CCCTC-binding factor (CTCF).1-3 CTCF is an insulator protein that blocks enhancer-promoter interactions, and the investigators found that cohesin also contributes to this activity. Thus, these studies demonstrate at least one mechanism by which cohesin can control gene expression.


Asunto(s)
Proteínas de Ciclo Celular/química , Proteínas Cromosómicas no Histona/química , Cromosomas/fisiología , Proteínas de Unión al ADN/química , Regulación de la Expresión Génica , Proteínas Represoras/química , Animales , Sitios de Unión , Factor de Unión a CCCTC , Segregación Cromosómica , Cromosomas/ultraestructura , Elementos de Facilitación Genéticos , Femenino , Células HeLa , Humanos , Masculino , Conformación Molecular , Regiones Promotoras Genéticas , Unión Proteica , Cohesinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...