RESUMEN
Topoisomerase 3α (TOP3A) is an enzyme that removes torsional strain and interlinks between DNA molecules. TOP3A localises to both the nucleus and mitochondria, with the two isoforms playing specialised roles in DNA recombination and replication respectively. Pathogenic variants in TOP3A can cause a disorder similar to Bloom syndrome, which results from bi-allelic pathogenic variants in BLM, encoding a nuclear-binding partner of TOP3A. In this work, we describe 11 individuals from 9 families with an adult-onset mitochondrial disease resulting from bi-allelic TOP3A gene variants. The majority of patients have a consistent clinical phenotype characterised by bilateral ptosis, ophthalmoplegia, myopathy and axonal sensory-motor neuropathy. We present a comprehensive characterisation of the effect of TOP3A variants, from individuals with mitochondrial disease and Bloom-like syndrome, upon mtDNA maintenance and different aspects of enzyme function. Based on these results, we suggest a model whereby the overall severity of the TOP3A catalytic defect determines the clinical outcome, with milder variants causing adult-onset mitochondrial disease and more severe variants causing a Bloom-like syndrome with mitochondrial dysfunction in childhood.
Asunto(s)
Enfermedades Mitocondriales , Enfermedades Musculares , Humanos , Mitocondrias/genética , ADN Mitocondrial/genética , Enfermedades Mitocondriales/genética , Síndrome , Inestabilidad GenómicaRESUMEN
Background: Mitochondrial disorders are known to cause diverse neurological phenotypes which cause a diagnostic challenge to most neurologists. Pathogenic polymerase gamma (POLG) variants have been described as a cause of chronic progressive external ophthalmoplegia, which manifests with ptosis, horizontal and vertical eye movement restriction and myopathy. Autosomal dominant progressive external ophthalmoplegia is rarely associated with Parkinsonism responsive to levodopa. Methods: We report a case of a 58-year-old man who presented with an eye movement disorder then Parkinsonism who made his way through the myasthenia then the movement disorder clinic. Results: A diagnostic right tibialis anterior biopsy revealed classical hallmarks of mitochondrial disease, and genetic testing identified compound heterozygous pathogenic gene variants in the POLG gene. The patient was diagnosed with autosomal recessive POLG disease. Conclusions: It is important to maintain a high index of suspicion of pathogenic POLG variants in patients presenting with atypical Parkinsonism and ophthalmoplegia. Patients with POLG-related disease will usually have ptosis, and downgaze is typically preserved until late in the disease. Accurate diagnosis is essential for appropriate prognosis and genetic counselling.
RESUMEN
AIMS: Dysferlinopathy is an autosomal recessive muscular dystrophy, caused by bi-allelic variants in the gene encoding dysferlin (DYSF). Onset typically occurs in the second to third decade and is characterised by slowly progressive skeletal muscle weakness and atrophy of the proximal and/or distal muscles of the four limbs. There are rare cases of symptomatic DYSF variant carriers. Here, we report a large family with a dominantly inherited hyperCKaemia and late-onset muscular dystrophy. METHODS AND RESULTS: Genetic analysis identified a co-segregating novel DYSF variant [NM_003494.4:c.6207del p.(Tyr2070Metfs*4)]. No secondary variants in DYSF or other dystrophy-related genes were identified on whole genome sequencing and analysis of the proband's DNA. Skeletal muscle involvement was milder and later onset than typical dysferlinopathy presentations; these clinical signs manifested in four individuals, all between the fourth and sixth decades of life. All individuals heterozygous for the c.6207del variant had hyperCKaemia. Histological analysis of skeletal muscle biopsies across three generations showed clear dystrophic signs, including inflammatory infiltrates, regenerating myofibres, increased variability in myofibre size and internal nuclei. Muscle magnetic resonance imaging revealed fatty replacement of muscle in two individuals. Western blot and immunohistochemical analysis of muscle biopsy demonstrated consistent reduction of dysferlin staining. Allele-specific quantitative PCR analysis of DYSF mRNA from patient muscle found that the variant, localised to the extreme C-terminus of dysferlin, does not activate post-transcriptional mRNA decay. CONCLUSIONS: We propose that this inheritance pattern may be underappreciated and that other late-onset muscular dystrophy cases with mono-allelic DYSF variants, particularly C-terminal premature truncation variants, may represent dominant forms of disease.
Asunto(s)
Disferlina , Distrofia Muscular de Cinturas , Distrofias Musculares , Humanos , Disferlina/genética , Proteínas de la Membrana/genética , Proteínas Musculares/genética , Músculo Esquelético/patología , Distrofia Muscular de Cinturas/genética , Linaje , Masculino , FemeninoRESUMEN
In this retrospective, multicentre, observational cohort study, we sought to determine the clinical, radiological, EEG, genetics and neuropathological characteristics of mitochondrial stroke-like episodes and to identify associated risk predictors. Between January 1998 and June 2018, we identified 111 patients with genetically determined mitochondrial disease who developed stroke-like episodes. Post-mortem cases of mitochondrial disease (n = 26) were identified from Newcastle Brain Tissue Resource. The primary outcome was to interrogate the clinico-radiopathological correlates and prognostic indicators of stroke-like episode in patients with mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes syndrome (MELAS). The secondary objective was to develop a multivariable prediction model to forecast stroke-like episode risk. The most common genetic cause of stroke-like episodes was the m.3243A>G variant in MT-TL1 (n = 66), followed by recessive pathogenic POLG variants (n = 22), and 11 other rarer pathogenic mitochondrial DNA variants (n = 23). The age of first stroke-like episode was available for 105 patients [mean (SD) age: 31.8 (16.1)]; a total of 35 patients (32%) presented with their first stroke-like episode ≥40 years of age. The median interval (interquartile range) between first and second stroke-like episodes was 1.33 (2.86) years; 43% of patients developed recurrent stroke-like episodes within 12 months. Clinico-radiological, electrophysiological and neuropathological findings of stroke-like episodes were consistent with the hallmarks of medically refractory epilepsy. Patients with POLG-related stroke-like episodes demonstrated more fulminant disease trajectories than cases of m.3243A>G and other mitochondrial DNA pathogenic variants, in terms of the frequency of refractory status epilepticus, rapidity of progression and overall mortality. In multivariate analysis, baseline factors of body mass index, age-adjusted blood m.3243A>G heteroplasmy, sensorineural hearing loss and serum lactate were significantly associated with risk of stroke-like episodes in patients with the m.3243A>G variant. These factors informed the development of a prediction model to assess the risk of developing stroke-like episodes that demonstrated good overall discrimination (area under the curve = 0.87, 95% CI 0.82-0.93; c-statistic = 0.89). Significant radiological and pathological features of neurodegeneration were more evident in patients harbouring pathogenic mtDNA variants compared with POLG: brain atrophy on cranial MRI (90% versus 44%, P < 0.001) and reduced mean brain weight (SD) [1044 g (148) versus 1304 g (142), P = 0.005]. Our findings highlight the often idiosyncratic clinical, radiological and EEG characteristics of mitochondrial stroke-like episodes. Early recognition of seizures and aggressive instigation of treatment may help circumvent or slow neuronal loss and abate increasing disease burden. The risk-prediction model for the m.3243A>G variant can help inform more tailored genetic counselling and prognostication in routine clinical practice.
Asunto(s)
Síndrome MELAS , Enfermedades Mitocondriales , Accidente Cerebrovascular , Adulto , ADN Mitocondrial/genética , Humanos , Síndrome MELAS/genética , Enfermedades Mitocondriales/complicaciones , Enfermedades Mitocondriales/genética , Mutación , Estudios Retrospectivos , Accidente Cerebrovascular/diagnóstico por imagen , Accidente Cerebrovascular/genéticaRESUMEN
Pathogenic variants in mitochondrial DNA (mtDNA) are associated with significant clinical heterogeneity with neuromuscular involvement commonly reported. Non-syndromic presentations of mtDNA disease continue to pose a diagnostic challenge and with genomic testing still necessitating a muscle biopsy in many cases. Here we describe an adult patient who presented with progressive ataxia, neuropathy and exercise intolerance in whom the application of numerous Mendelian gene panels had failed to make a genetic diagnosis. Muscle biopsy revealed characteristic mitochondrial pathology (cytochrome c oxidase deficient, ragged-red fibers) prompting a thorough investigation of the mitochondrial genome. Two heteroplasmic MT-CO2 gene variants (NC_012920.1: m.7887G>A and m.8250G>A) were identified, necessitating single fiber segregation and familial studies - including the biopsy of the patient's clinically-unaffected mother - to demonstrate pathogenicity of the novel m.7887G>A p.(Gly101Asp) variant and establishing this as the cause of the mitochondrial biochemical defects and clinical presentation. In the era of high throughput whole exome and genome sequencing, muscle biopsy remains a key investigation in the diagnosis of patients with non-syndromic presentations of adult-onset mitochondrial disease and fully defining the pathogenicity of novel mtDNA variants.
Asunto(s)
Ataxia Cerebelosa/diagnóstico , Enfermedades Mitocondriales/diagnóstico , Músculo Esquelético/patología , Mutación/genética , Secuencia de Bases , Biopsia , ADN Mitocondrial , Diagnóstico Diferencial , Humanos , Masculino , Persona de Mediana Edad , Secuenciación del ExomaRESUMEN
BACKGROUND: Autophagy is the major intracellular degradation route in mammalian cells. Systemic ablation of core autophagy-related (ATG) genes in mice leads to embryonic or perinatal lethality, and conditional models show neurodegeneration. Impaired autophagy has been associated with a range of complex human diseases, yet congenital autophagy disorders are rare. METHODS: We performed a genetic, clinical, and neuroimaging analysis involving five families. Mechanistic investigations were conducted with the use of patient-derived fibroblasts, skeletal muscle-biopsy specimens, mouse embryonic fibroblasts, and yeast. RESULTS: We found deleterious, recessive variants in human ATG7, a core autophagy-related gene encoding a protein that is indispensable to classical degradative autophagy. Twelve patients from five families with distinct ATG7 variants had complex neurodevelopmental disorders with brain, muscle, and endocrine involvement. Patients had abnormalities of the cerebellum and corpus callosum and various degrees of facial dysmorphism. These patients have survived with impaired autophagic flux arising from a diminishment or absence of ATG7 protein. Although autophagic sequestration was markedly reduced, evidence of basal autophagy was readily identified in fibroblasts and skeletal muscle with loss of ATG7. Complementation of different model systems by deleterious ATG7 variants resulted in poor or absent autophagic function as compared with the reintroduction of wild-type ATG7. CONCLUSIONS: We identified several patients with a neurodevelopmental disorder who have survived with a severe loss or complete absence of ATG7, an essential effector enzyme for autophagy without a known functional paralogue. (Funded by the Wellcome Centre for Mitochondrial Research and others.).
Asunto(s)
Anomalías Múltiples/genética , Ataxia/genética , Proteína 7 Relacionada con la Autofagia/genética , Autofagia/genética , Discapacidades del Desarrollo/genética , Mutación Missense , Adolescente , Adulto , Autofagia/fisiología , Proteína 7 Relacionada con la Autofagia/fisiología , Células Cultivadas , Cerebelo/anomalías , Simulación por Computador , Cara/anomalías , Femenino , Fibroblastos , Genes Recesivos , Humanos , Lactante , Masculino , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Malformaciones del Sistema Nervioso/genética , Linaje , FenotipoRESUMEN
OBJECTIVE: To determine the prevalence of neuromuscular junction (NMJ) abnormalities in patients with mitochondrial disease. METHODS: Eighty patients with genetically proven mitochondrial disease were recruited from a national center for mitochondrial disease in the United Kingdom. Participants underwent detailed clinical and neurophysiologic testing including single-fiber electromyography. RESULTS: The overall prevalence of neuromuscular transmission defects was 25.6%. The highest prevalence was in patients with pathogenic dominant RRM2B variants (50%), but abnormalities were found in a wide range of mitochondrial genotypes. The presence of NMJ abnormalities was strongly associated with coexistent myopathy, but not with neuropathy. Furthermore, 15% of patients with NMJ abnormality had no evidence of either myopathy or neuropathy. CONCLUSIONS: NMJ transmission defects are common in mitochondrial disease. In some patients, NMJ dysfunction occurs in the absence of obvious pre- or post-synaptic pathology, suggesting that the NMJ may be specifically affected.
RESUMEN
Mitochondrial complex I deficiency is associated with a diverse range of clinical phenotypes and can arise due to either mitochondrial DNA (mtDNA) or nuclear gene defects. We investigated two adult patients who exhibited non-syndromic neurological features and evidence of isolated mitochondrial complex I deficiency in skeletal muscle biopsies. The first presented with indolent myopathy, progressive since age 17, while the second developed deafness around age 20 and other relapsing-remitting neurological symptoms since. A novel, likely de novo, frameshift variant in MT-ND6 (m.14512_14513del) and a novel maternally-inherited transversion mutation in MT-ND1 were identified, respectively. Skewed tissue segregation of mutant heteroplasmy level was observed; the mutant heteroplasmy levels of both variants were greater than 70% in muscle homogenate, however, in blood the MT-ND6 variant was undetectable while the mutant heteroplasmy level of the MT-ND1 variant was low (12%). Assessment of complex I assembly by Blue-Native PAGE demonstrated a decrease in fully assembled complex I in the muscle of both cases. SDS-PAGE and immunoblotting showed decreased levels of mtDNA-encoded ND1 and several nuclear encoded complex I subunits in both cases, consistent with functional pathogenic consequences of the identified variants. Pathogenicity of the m.14512_14513del was further corroborated by single-fiber segregation studies.
RESUMEN
Autosomal dominant progressive external ophthalmoplegia (adPEO) is a late-onset, Mendelian mitochondrial disorder characterised by paresis of the extraocular muscles, ptosis, and skeletal-muscle restricted multiple mitochondrial DNA (mtDNA) deletions. Although dominantly inherited, pathogenic variants in POLG, TWNK and RRM2B are among the most common genetic defects of adPEO, identification of novel candidate genes and the underlying pathomechanisms remains challenging. We report the clinical, genetic and molecular investigations of a patient who presented in the seventh decade of life with PEO. Oxidative histochemistry revealed cytochrome c oxidase-deficient fibres and occasional ragged red fibres showing subsarcolemmal mitochondrial accumulation in skeletal muscle, while molecular studies identified the presence of multiple mtDNA deletions. Negative candidate screening of known nuclear genes associated with PEO prompted diagnostic exome sequencing, leading to the prioritisation of a novel heterozygous c.547G>C variant in GMPR (NM_006877.3) encoding guanosine monophosphate reductase, a cytosolic enzyme required for maintaining the cellular balance of adenine and guanine nucleotides. We show that the novel c.547G>C variant causes aberrant splicing, decreased GMPR protein levels in patient skeletal muscle, proliferating and quiescent cells, and is associated with subtle changes in nucleotide homeostasis protein levels and evidence of disturbed mtDNA maintenance in skeletal muscle. Despite confirmation of GMPR deficiency, demonstrating marked defects of mtDNA replication or nucleotide homeostasis in patient cells proved challenging. Our study proposes that GMPR is the 19th locus for PEO and highlights the complexities of uncovering disease mechanisms in late-onset PEO phenotypes.
Asunto(s)
ADN Mitocondrial/genética , GMP-Reductasa/genética , Enfermedades de Inicio Tardío/genética , Músculo Esquelético/enzimología , Oftalmoplejía/genética , Adenina/metabolismo , Anciano , Células Cultivadas , Deficiencia de Citocromo-c Oxidasa/metabolismo , Replicación del ADN , ADN Mitocondrial/metabolismo , Femenino , Fibroblastos/enzimología , GMP-Reductasa/deficiencia , GMP-Reductasa/metabolismo , Guanina/metabolismo , Células HEK293 , Células HeLa , Heterocigoto , Humanos , Enfermedades de Inicio Tardío/metabolismo , Enfermedades de Inicio Tardío/patología , Músculo Esquelético/patología , Oftalmoplejía/enzimología , Oftalmoplejía/fisiopatología , Fosforilación Oxidativa , Empalme del ARN , Eliminación de Secuencia , Secuenciación del ExomaRESUMEN
Both nuclear and mitochondrial DNA defects can cause isolated cytochrome c oxidase (COX; complex IV) deficiency, leading to the development of the mitochondrial disease. We report a 52-year-old female patient who presented with a late-onset, progressive cerebellar ataxia, tremor and axonal neuropathy. No family history of neurological disorder was reported. Although her muscle biopsy demonstrated a significant COX deficiency, there was no clinical and electromyographical evidence of myopathy. Electrophysiological studies identified low frequency sinusoidal postural tremor at 3 Hz, corroborating the clinical finding of cerebellar dysfunction. Complete sequencing of the mitochondrial DNA genome in muscle identified a novel MT-CO2 variant, m.8163A>G predicting p.(Tyr193Cys). We present several lines of evidence, in proving the pathogenicity of this heteroplasmic mitochondrial DNA variant, as the cause of her clinical presentation. Our findings serve as an important reminder that full mitochondrial DNA analysis should be included in the diagnostic pipeline for investigating individuals with spinocerebellar ataxia.
RESUMEN
Distinct clinical syndromes have been associated with pathogenic MT-ATP6 variants. In this cohort study, we identified 125 individuals (60 families) including 88 clinically affected individuals and 37 asymptomatic carriers. Thirty-one individuals presented with Leigh syndrome and 7 with neuropathy ataxia retinitis pigmentosa. The remaining 50 patients presented with variable nonsyndromic features including ataxia, neuropathy, and learning disability. We confirmed maternal inheritance in 39 families and demonstrated that tissue segregation patterns and phenotypic threshold are variant dependent. Our findings suggest that MT-ATP6-related mitochondrial DNA disease is best conceptualized as a mitochondrial disease spectrum disorder and should be routinely included in genetic ataxia and neuropathy gene panels. ANN NEUROL 2019;86:310-315.
Asunto(s)
Variación Genética/genética , Enfermedades Mitocondriales/epidemiología , Enfermedades Mitocondriales/genética , ATPasas de Translocación de Protón Mitocondriales/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Estudios de Cohortes , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Enfermedades Mitocondriales/diagnóstico , Reino Unido/epidemiología , Adulto JovenRESUMEN
OBJECTIVE: To determine the cognitive profile of adult patients with mitochondrial disease, and the effect of disease severity on cognition. METHODS: Using a prospective case-control design, we compared cognition of patients to normative data and to matched controls, assessed three times over 18 months. Forty-nine patients with m.3243A>G (N = 36) and m.8344A>G (N = 13) mtDNA mutations and 32 controls, matched by age (±5 years) and premorbid cognition (±10 WTAR FSIQ points), participated. Participants completed neuropsychological assessments of general cognition (WAIS-IV), executive function (D-KEFS), and memory (WMS-IV). Potential predictors of cognition were explored. RESULTS: Patients show mild-to-moderate premorbid cognitive impairment, but substantial impairment in current general cognition and distinct domains, including verbal comprehension, perceptual reasoning, working memory, processing speed, and memory retrieval. Executive dysfunction may be caused by slower decision-making. Patients performed worse than controls, except on memory tasks, indicating intact memory, when premorbid cognition is controlled for. Premorbid cognition and disease severity were consistent predictors of cognition in patients; however, cognitive decline appears slow and is unlikely in the short-term, when other disease-specific factors remain stable. INTERPRETATION: Patients should be monitored to facilitate early identification of a complex profile of cognitive deficits and individuals with higher disease burden should be followed up more closely. On development of cognitive difficulties, appropriate compensatory strategies should be determined through in-depth assessment. Using strategies such as slower presentation of information, multiple modes of presentation, active discussion to aid understanding and decision-making, and use of memory aids, may ameliorate difficulties.
Asunto(s)
Disfunción Cognitiva/psicología , Enfermedades Mitocondriales/psicología , Adulto , Estudios de Casos y Controles , Cognición , Femenino , Humanos , Discapacidad Intelectual , Masculino , Memoria , Persona de Mediana Edad , Pruebas Neuropsicológicas , Estudios ProspectivosRESUMEN
CONTEXT: Abnormal growth and short stature are observed in patients with mitochondrial disease, but it is unclear whether there is a relationship between final adult height and disease severity. OBJECTIVE: To determine whether patients with genetically confirmed mitochondrial disease are shorter than their peers and whether stature is related to disease severity. DESIGN: Analysis of final adult height in relation to disease severity as determined by the Newcastle Mitochondrial Disease Adult Scale (NMDAS). SETTING: UK Mitochondrial Disease Patient Cohort (Mito Cohort). PATIENTS: 575 patients were identified with recorded height, weight, and molecular genetic diagnosis of mitochondrial disease within the Mito Cohort. MAIN OUTCOME MEASURES: Adult height, body mass index (BMI), and their association with genetic subgroup and disease severity. RESULTS: Adults with mitochondrial disease were short, with a mean height of -0.49 SD (95% CI, -0.58 to -0.39; n = 575) compared with UK reference data. Patients were overweight, with a BMI SD of 0.52 (95% CI, 0.37 to 0.67; n = 472). The most common genetic subgroup (m.3243A>G mutation) had a height SD of -0.70 (95% CI, -0.85 to -0.54; n = 234) and a BMI SD of 0.12 (95% CI, -0.10 to 0.34; n = 212). NMDAS scores were negatively correlated with height SD (r = -0.25; 95% CI, -0.33 to -0.17; P < 0.001, n = 533). Rate of disease progression also correlated negatively with adult height (P < 0.001). CONCLUSION: Final height in mitochondrial disease reflects disease severity and rate of disease progression. Mitochondrial dysfunction and associated subclinical comorbidities affect growth plate physiology.
Asunto(s)
Estatura/genética , Trastornos del Crecimiento/genética , Enfermedades Mitocondriales/diagnóstico , Índice de Severidad de la Enfermedad , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Índice de Masa Corporal , Progresión de la Enfermedad , Femenino , Trastornos del Crecimiento/diagnóstico , Humanos , Masculino , Persona de Mediana Edad , Enfermedades Mitocondriales/complicaciones , Enfermedades Mitocondriales/genética , Estudios Retrospectivos , Reino Unido , Adulto JovenRESUMEN
Background: Focal-onset seizures and encephalopathy are prominent features of a stroke-like episode, which is a severe neurological manifestation associated with subtypes of mitochondrial disease. Despite more than 30 years of research, the acute treatment of stroke-like episodes remains controversial. Methods: We used the modified Delphi process to harness the clinical expertise of a group of mitochondrial disease specialists from five European countries to produce consensus guidance for the acute management of stroke-like episodes and commonly associated complications. Results: Consensus on a new definition of mitochondrial stroke-like episodes was achieved and enabled the group to develop diagnostic criteria based on clinical features, neuroimaging and/or electroencephalogram findings. Guidelines for the management of strokelike episodes were agreed with aggressive seizure management strongly recommended at the outset of stroke-like episodes. Conclusions: Our consensus statement defines stroke-like episodes in terms of an epileptic encephalopathy and we have used this to revise both diagnostic criteria and guidelines for management. A prospective, multi-centre, randomised controlled trial is required for evaluating the efficacy of any compound on modifying the trajectory of stroke-like episodes.
RESUMEN
Mitochondrial disease associated with the pathogenic m.3243A>G variant is a common, clinically heterogeneous, neurogenetic disorder. Using multiple linear regression and linear mixed modelling, we evaluated which commonly assayed tissue (blood N = 231, urine N = 235, skeletal muscle N = 77) represents the m.3243A>G mutation load and mitochondrial DNA (mtDNA) copy number most strongly associated with disease burden and progression. m.3243A>G levels are correlated in blood, muscle and urine (R2 = 0.61-0.73). Blood heteroplasmy declines by ~2.3%/year; we have extended previously published methodology to adjust for age. In urine, males have higher mtDNA copy number and ~20% higher m.3243A>G mutation load; we present formulas to adjust for this. Blood is the most highly correlated mutation measure for disease burden and progression in m.3243A>G-harbouring individuals; increasing age and heteroplasmy contribute (R2 = 0.27, P < 0.001). In muscle, heteroplasmy, age and mtDNA copy number explain a higher proportion of variability in disease burden (R2 = 0.40, P < 0.001), although activity level and disease severity are likely to affect copy number. Whilst our data indicate that age-corrected blood m.3243A>G heteroplasmy is the most convenient and reliable measure for routine clinical assessment, additional factors such as mtDNA copy number may also influence disease severity.
Asunto(s)
ADN Mitocondrial/análisis , Genes Mitocondriales , Enfermedades Mitocondriales/genética , Mutación , Adulto , Factores de Edad , Anciano , Variaciones en el Número de Copia de ADN , Análisis Mutacional de ADN , ADN Mitocondrial/sangre , ADN Mitocondrial/orina , Progresión de la Enfermedad , Femenino , Humanos , Modelos Lineales , Masculino , Persona de Mediana Edad , Músculo Esquelético/metabolismo , Análisis de Regresión , Factores SexualesRESUMEN
Objective: The pathogenic mitochondrial DNA m.3243A>G mutation is associated with a wide range of clinical features, making disease prognosis extremely difficult to predict. We aimed to understand the cause of this heterogeneity. Methods: We examined the phenotypic profile of 238 adult m.3243A>G carriers (patients and asymptomatic carriers) from the UK MRC Mitochondrial Disease Patient Cohort using the Newcastle Mitochondrial Disease Adult Scale. We modeled the role of risk factors for the development of specific phenotypes using proportional odds logistic regression. As mitochondria are under the dual control of their own and the nuclear genome, we examined the role of additive nuclear genetic factors in the development of these phenotypes within 46 pedigrees from the cohort. Results: Seizures and stroke-like episodes affect 25% and 17% of patients, respectively; more common features include hearing impairment, gastrointestinal disturbance, psychiatric involvement, and ataxia. Age, age-adjusted blood heteroplasmy levels, and sex are poor predictors of phenotypic severity. Hearing impairment, diabetes, and encephalopathy show the strongest associations, but pseudo-R2 values are low (0.14-0.17). We found a high heritability estimate for psychiatric involvement (h2=0.76, P = 0.0003) and moderate estimates for cognition (h2=0.46, P = 0.0021), ataxia (h2 = 0.45, P = 0.0011), migraine (h2 = 0.41, P = 0.0138), and hearing impairment (h2 = 0.40, P = 0.0050). Interpretation: Our results provide good evidence for the presence of nuclear genetic factors influencing clinical outcomes in m.3234A>G-related disease, paving the way for future work identifying these through large-scale genetic linkage and association studies, increasing our understanding of the pathogenicity of m.3243A>G and providing improved estimates of prognosis.
RESUMEN
Mutations in the m.13094T>C MT-ND5 gene have been previously described in three cases of Leigh Syndrome (LS). In this retrospective, international cohort study we identified 20 clinically affected individuals (13 families) and four asymptomatic carriers. Ten patients were deceased at the time of analysis (median age of death was 10years (range: 5·4months-37years, IQR=17·9years). Nine patients manifested with LS, one with mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes (MELAS), and one with Leber hereditary optic neuropathy. The remaining nine patients presented with either overlapping syndromes or isolated neurological symptoms. Mitochondrial respiratory chain activity analysis was normal in five out of ten muscle biopsies. We confirmed maternal inheritance in six families, and demonstrated marked variability in tissue segregation, and phenotypic expression at relatively low blood mutant loads. Neuropathological studies of two patients manifesting with LS/MELAS showed prominent capillary proliferation, microvacuolation and severe neuronal cell loss in the brainstem and cerebellum, with conspicuous absence of basal ganglia involvement. These findings suggest that whole mtDNA genome sequencing should be considered in patients with suspected mitochondrial disease presenting with complex neurological manifestations, which would identify over 300 known pathogenic variants including the m.13094T>C.
Asunto(s)
Encéfalo/patología , Complejo I de Transporte de Electrón/genética , Proteínas Mitocondriales/genética , Mutación/genética , Adolescente , Adulto , Encéfalo/diagnóstico por imagen , Niño , Estudios de Cohortes , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Síndrome , Adulto JovenRESUMEN
OBJECTIVE: Single, large-scale deletions in mitochondrial DNA (mtDNA) are a common cause of mitochondrial disease. This study aimed to investigate the relationship between the genetic defect and molecular phenotype to improve understanding of pathogenic mechanisms associated with single, large-scale mtDNA deletions in skeletal muscle. METHODS: We investigated 23 muscle biopsies taken from adult patients (6 males/17 females with a mean age of 43 years) with characterized single, large-scale mtDNA deletions. Mitochondrial respiratory chain deficiency in skeletal muscle biopsies was quantified by immunoreactivity levels for complex I and complex IV proteins. Single muscle fibers with varying degrees of deficiency were selected from 6 patient biopsies for determination of mtDNA deletion level and copy number by quantitative polymerase chain reaction. RESULTS: We have defined 3 "classes" of single, large-scale deletion with distinct patterns of mitochondrial deficiency, determined by the size and location of the deletion. Single fiber analyses showed that fibers with greater respiratory chain deficiency harbored higher levels of mtDNA deletion with an increase in total mtDNA copy number. For the first time, we have demonstrated that threshold levels for complex I and complex IV deficiency differ based on deletion class. INTERPRETATION: Combining genetic and immunofluorescent assays, we conclude that thresholds for complex I and complex IV deficiency are modulated by the deletion of complex-specific protein-encoding genes. Furthermore, removal of mt-tRNA genes impacts specific complexes only at high deletion levels, when complex-specific protein-encoding genes remain. These novel findings provide valuable insight into the pathogenic mechanisms associated with these mutations. Ann Neurol 2018;83:115-130.