Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
mBio ; 15(1): e0303123, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38117060

RESUMEN

IMPORTANCE: Viruses modulate host cell metabolism to support the mass production of viral progeny. For human cytomegalovirus, we find that the viral UL38 protein is critical for driving these pro-viral metabolic changes. However, our results indicate that these changes come at a cost, as UL38 induces an anabolic rigidity that leads to a metabolic vulnerability. We find that UL38 decouples the link between glucose availability and fatty acid biosynthetic activity. Normal cells respond to glucose limitation by down-regulating fatty acid biosynthesis. Expression of UL38 results in the inability to modulate fatty acid biosynthesis in response to glucose limitation, which results in cell death. We find this vulnerability in the context of viral infection, but this linkage between fatty acid biosynthesis, glucose availability, and cell death could have broader implications in other contexts or pathologies that rely on glycolytic remodeling, for example, oncogenesis.


Asunto(s)
Infecciones por Citomegalovirus , Citomegalovirus , Ácidos Grasos , Humanos , Citomegalovirus/fisiología , Infecciones por Citomegalovirus/metabolismo , Ácidos Grasos/metabolismo , Glucosa/metabolismo , Glucólisis , Lipogénesis
2.
bioRxiv ; 2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37292722

RESUMEN

Human cytomegalovirus (HCMV) modulates cellular metabolism to support productive infection, and the HCMV UL38 protein drives many aspects of this HCMV-induced metabolic program. However, it remains to be determined whether virally-induced metabolic alterations might induce novel therapeutic vulnerabilities in virally infected cells. Here, we explore how HCMV infection and the UL38 protein modulate cellular metabolism and how these changes alter the response to nutrient limitation. We find that expression of UL38, either in the context of HCMV infection or in isolation, sensitizes cells to glucose limitation resulting in cell death. This sensitivity is mediated through UL38's inactivation of the TSC complex subunit 2 (TSC2) protein, a central metabolic regulator that possesses tumor-suppressive properties. Further, expression of UL38 or the inactivation of TSC2 results in anabolic rigidity in that the resulting increased levels of fatty acid biosynthesis are insensitive to glucose limitation. This failure to regulate fatty acid biosynthesis in response to glucose availability sensitizes cells to glucose limitation, resulting in cell death unless fatty acid biosynthesis is inhibited. These experiments identify a regulatory circuit between glycolysis and fatty acid biosynthesis that is critical for cell survival upon glucose limitation and highlight a metabolic vulnerability associated with viral infection and the inactivation of normal metabolic regulatory controls.

3.
bioRxiv ; 2023 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-36798186

RESUMEN

Cells rely on antioxidants to survive. The most abundant antioxidant is glutathione (GSH). The synthesis of GSH is non-redundantly controlled by the glutamate-cysteine ligase catalytic subunit (GCLC). GSH imbalance is implicated in many diseases, but the requirement for GSH in adult tissues is unclear. To interrogate this, we developed a series of in vivo models to induce Gclc deletion in adult animals. We find that GSH is essential to lipid abundance in vivo. GSH levels are reported to be highest in liver tissue, which is also a hub for lipid production. While the loss of GSH did not cause liver failure, it decreased lipogenic enzyme expression, circulating triglyceride levels, and fat stores. Mechanistically, we found that GSH promotes lipid abundance by repressing NRF2, a transcription factor induced by oxidative stress. These studies identify GSH as a fulcrum in the liver's balance of redox buffering and triglyceride production.

4.
PLoS Pathog ; 15(1): e1007569, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30677091

RESUMEN

Human Cytomegalovirus (HCMV) infection induces several metabolic activities that are essential for viral replication. Despite the important role that this metabolic modulation plays during infection, the viral mechanisms involved are largely unclear. We find that the HCMV UL38 protein is responsible for many aspects of HCMV-mediated metabolic activation, with UL38 being necessary and sufficient to drive glycolytic activation and induce the catabolism of specific amino acids. UL38's metabolic reprogramming role is dependent on its interaction with TSC2, a tumor suppressor that inhibits mTOR signaling. Further, shRNA-mediated knockdown of TSC2 recapitulates the metabolic phenotypes associated with UL38 expression. Notably, we find that in many cases the metabolic flux activation associated with UL38 expression is largely independent of mTOR activity, as broad spectrum mTOR inhibition does not impact UL38-mediated induction of glycolysis, glutamine consumption, or the secretion of proline or alanine. In contrast, the induction of metabolite concentrations observed with UL38 expression are largely dependent on active mTOR. Collectively, our results indicate that the HCMV UL38 protein induces a pro-viral metabolic environment via inhibition of TSC2.


Asunto(s)
Proteínas de la Cápside/metabolismo , Citomegalovirus/metabolismo , Proteína 2 del Complejo de la Esclerosis Tuberosa/metabolismo , Proteínas de la Cápside/genética , Línea Celular , Citomegalovirus/genética , Infecciones por Citomegalovirus/virología , Fibroblastos/virología , Glucólisis , Células HEK293/virología , Humanos , ARN Interferente Pequeño/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Replicación Viral
5.
Cell Rep ; 17(3): 821-836, 2016 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-27732857

RESUMEN

Metabolic reprogramming is critical to oncogenesis, but the emergence and function of this profound reorganization remain poorly understood. Here we find that cooperating oncogenic mutations drive large-scale metabolic reprogramming, which is both intrinsic to cancer cells and obligatory for the transition to malignancy. This involves synergistic regulation of several genes encoding metabolic enzymes, including the lactate dehydrogenases LDHA and LDHB and mitochondrial glutamic pyruvate transaminase 2 (GPT2). Notably, GPT2 engages activated glycolysis to drive the utilization of glutamine as a carbon source for TCA cycle anaplerosis in colon cancer cells. Our data indicate that the Warburg effect supports oncogenesis via GPT2-mediated coupling of pyruvate production to glutamine catabolism. Although critical to the cancer phenotype, GPT2 activity is dispensable in cells that are not fully transformed, thus pinpointing a metabolic vulnerability specifically associated with cancer cell progression to malignancy.


Asunto(s)
Glutamina/metabolismo , Glucólisis , Neoplasias/metabolismo , Carcinogénesis/metabolismo , Carcinogénesis/patología , Hipoxia de la Célula , Línea Celular Tumoral , Proliferación Celular , Ciclo del Ácido Cítrico , Genes ras , Humanos , Isoenzimas/metabolismo , L-Lactato Deshidrogenasa/metabolismo , Mutación/genética , Neoplasias/patología , Fenotipo , Transaminasas/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
6.
J Virol ; 85(12): 5814-24, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21471234

RESUMEN

We have previously reported that human cytomegalovirus (HCMV) infection induces large-scale changes to host cell glycolytic, nucleic acid, and phospholipid metabolism. Here we explore the viral mechanisms involved in fatty acid biosynthetic activation. Our results indicate that HCMV targets ACC1, the rate-limiting enzyme of fatty acid biosynthesis, through multiple mechanisms. HCMV infection was found to activate ACC1 expression, increasing the abundance of both ACC1 mRNA and protein. Viral gene expression but not viral DNA replication was found to be necessary for HCMV-mediated induction of ACC1 levels. HCMV infection was also found to increase the proteolytic processing of SREBP-2, a transcription factor whose proteolytic cleavage is known to activate a variety of phospholipid metabolic genes. Processing of SREBP-2 was found to be dependent on mTOR activity; pharmaceutical inhibition of mTOR blocked HCMV-induced SREBP-2 processing and prevented the induction of fatty acid biosynthesis and ACC1 expression. Independent of the increases in ACC1 expression, HCMV infection also induced ACC1's enzymatic activity. Inhibition of ACC1 through either RNA interference (RNAi) or inhibitor treatment was found to attenuate HCMV replication, and HCMV replication was sensitive to ACC1 inhibition even at the later stages of infection, suggesting a late role for fatty acid biosynthesis during HCMV replication. These findings indicate that HCMV infection actively modulates numerous functional aspects of a key metabolic regulatory enzyme that is important for high-titer viral replication.


Asunto(s)
Acetil-CoA Carboxilasa/metabolismo , Citomegalovirus/patogenicidad , Ácidos Grasos/biosíntesis , Fibroblastos/virología , Interacciones Huésped-Patógeno , ARN Mensajero/metabolismo , Acetil-CoA Carboxilasa/genética , Línea Celular , Replicación del ADN , Fibroblastos/enzimología , Humanos , ARN Mensajero/genética , Proteína 2 de Unión a Elementos Reguladores de Esteroles/genética , Proteína 2 de Unión a Elementos Reguladores de Esteroles/metabolismo , Replicación Viral
7.
J Virol ; 85(2): 705-14, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21084482

RESUMEN

Viruses depend on the host cell to provide the energy and biomolecular subunits necessary for production of viral progeny. We have previously reported that human cytomegalovirus (HCMV) infection induces dramatic changes to central carbon metabolism, including glycolysis, the tricarboxylic acid (TCA) cycle, fatty acid biosynthesis, and nucleotide biosynthesis. Here, we explore the mechanisms involved in HCMV-mediated glycolytic activation. We find that HCMV virion binding and tegument protein delivery are insufficient for HCMV-mediated activation of glycolysis. Viral DNA replication and late-gene expression, however, are not required. To narrow down the list of cellular pathways important for HCMV-mediated [corrected] activation of glycolysis, we utilized pharmaceutical inhibitors to block pathways reported to be both involved in metabolic control and activated by HCMV infection. We find that inhibition of calmodulin-dependent kinase kinase (CaMKK), but not calmodulin-dependent kinase II (CaMKII) or protein kinase A (PKA), blocks HCMV-mediated activation of glycolysis. HCMV infection was also found to target calmodulin-dependent kinase kinase 1 (CaMKK1) expression, increasing the levels of CaMKK1 mRNA and protein. Our results indicate that inhibition of CaMKK has a negligible impact on immediate-early-protein accumulation yet severely attenuates production of HCMV viral progeny, reduces expression of at least one early gene, and blocks viral DNA replication. Inhibition of CaMKK did not affect the glycolytic activation induced by another herpes virus, herpes simplex virus type 1 (HSV-1). Furthermore, inhibition of CaMKK had a much smaller impact on HSV-1 replication than on that of HCMV. These data suggest that the role of CaMKK during the viral life cycle is, in this regard, HCMV specific. Taken together, our results suggest that CaMKK is an important factor for HCMV replication and HCMV-mediated glycolytic activation.


Asunto(s)
Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/biosíntesis , Citomegalovirus/patogenicidad , Glucólisis , Interacciones Huésped-Patógeno , Replicación Viral , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/antagonistas & inhibidores , Proteína Quinasa Tipo 1 Dependiente de Calcio Calmodulina/biosíntesis , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/antagonistas & inhibidores , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/biosíntesis , Línea Celular , Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , Proteínas Quinasas Dependientes de AMP Cíclico/biosíntesis , Fibroblastos/virología , Expresión Génica , Herpesvirus Humano 1/patogenicidad , Humanos , ARN Mensajero/biosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA