Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 3463, 2023 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-37308472

RESUMEN

Malaria results in more than 500,000 deaths per year and the causative Plasmodium parasites continue to develop resistance to all known agents, including different antimalarial combinations. The class XIV myosin motor PfMyoA is part of a core macromolecular complex called the glideosome, essential for Plasmodium parasite mobility and therefore an attractive drug target. Here, we characterize the interaction of a small molecule (KNX-002) with PfMyoA. KNX-002 inhibits PfMyoA ATPase activity in vitro and blocks asexual blood stage growth of merozoites, one of three motile Plasmodium life-cycle stages. Combining biochemical assays and X-ray crystallography, we demonstrate that KNX-002 inhibits PfMyoA using a previously undescribed binding mode, sequestering it in a post-rigor state detached from actin. KNX-002 binding prevents efficient ATP hydrolysis and priming of the lever arm, thus inhibiting motor activity. This small-molecule inhibitor of PfMyoA paves the way for the development of alternative antimalarial treatments.


Asunto(s)
Antimaláricos , Antagonistas del Ácido Fólico , Miosina Tipo IIA no Muscular , Plasmodium falciparum , Actinas , Bioensayo
2.
RSC Adv ; 13(26): 17667-17677, 2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37312993

RESUMEN

The papain-like protease (PLpro) plays a critical role in SARS-CoV-2 (SCoV-2) pathogenesis and is essential for viral replication and for allowing the virus to evade the host immune response. Inhibitors of PLpro have great therapeutic potential, however, developing them has been challenging due to PLpro's restricted substrate binding pocket. In this report, we screened a 115 000-compound library for PLpro inhibitors and identified a new pharmacophore, based on a mercapto-pyrimidine fragment that is a reversible covalent inhibitor (RCI) of PLpro and inhibits viral replication in cells. Compound 5 had an IC50 of 5.1 µM for PLpro inhibition and hit optimization yielded a derivative with increased potency (IC50 0.85 µM, 6-fold higher). Activity based profiling of compound 5 demonstrated that it reacts with PLpro cysteines. We show here that compound 5 represents a new class of RCIs, which undergo an addition elimination reaction with cysteines in their target proteins. We further show that their reversibility is catalyzed by exogenous thiols and is dependent on the size of the incoming thiol. In contrast, traditional RCIs are all based upon the Michael addition reaction mechanism and their reversibility is base-catalyzed. We identify a new class of RCIs that introduces a more reactive warhead with a pronounced selectivity profile based on thiol ligand size. This could allow the expansion of RCI modality use towards a larger group of proteins important for human disease.

3.
Cell Chem Biol ; 30(9): 1090-1103.e7, 2023 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-37178691

RESUMEN

Ferroptosis is a regulated form of cell death associated with the iron-dependent accumulation of phospholipid hydroperoxides. Inducing ferroptosis is a promising approach to treat therapy-resistant cancer. Ferroptosis suppressor protein 1 (FSP1) promotes ferroptosis resistance in cancer by generating the antioxidant form of coenzyme Q10 (CoQ). Despite the important role of FSP1, few molecular tools exist that target the CoQ-FSP1 pathway. Through a series of chemical screens, we identify several structurally diverse FSP1 inhibitors. The most potent of these compounds, ferroptosis sensitizer 1 (FSEN1), is an uncompetitive inhibitor that acts selectively through on-target inhibition of FSP1 to sensitize cancer cells to ferroptosis. Furthermore, a synthetic lethality screen reveals that FSEN1 synergizes with endoperoxide-containing ferroptosis inducers, including dihydroartemisinin, to trigger ferroptosis. These results provide new tools that catalyze the exploration of FSP1 as a therapeutic target and highlight the value of combinatorial therapeutic regimes targeting FSP1 and additional ferroptosis defense pathways.


Asunto(s)
Ferroptosis , Neoplasias , Humanos , Antioxidantes/metabolismo , Peroxidación de Lípido , Neoplasias/tratamiento farmacológico , Muerte Celular
4.
PLoS Biol ; 21(5): e3002110, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37155705

RESUMEN

Toxoplasma gondii is a widespread apicomplexan parasite that can cause severe disease in its human hosts. The ability of T. gondii and other apicomplexan parasites to invade into, egress from, and move between cells of the hosts they infect is critical to parasite virulence and disease progression. An unusual and highly conserved parasite myosin motor (TgMyoA) plays a central role in T. gondii motility. The goal of this work was to determine whether the parasite's motility and lytic cycle can be disrupted through pharmacological inhibition of TgMyoA, as an approach to altering disease progression in vivo. To this end, we first sought to identify inhibitors of TgMyoA by screening a collection of 50,000 structurally diverse small molecules for inhibitors of the recombinant motor's actin-activated ATPase activity. The top hit to emerge from the screen, KNX-002, inhibited TgMyoA with little to no effect on any of the vertebrate myosins tested. KNX-002 was also active against parasites, inhibiting parasite motility and growth in culture in a dose-dependent manner. We used chemical mutagenesis, selection in KNX-002, and targeted sequencing to identify a mutation in TgMyoA (T130A) that renders the recombinant motor less sensitive to compound. Compared to wild-type parasites, parasites expressing the T130A mutation showed reduced sensitivity to KNX-002 in motility and growth assays, confirming TgMyoA as a biologically relevant target of KNX-002. Finally, we present evidence that KNX-002 can slow disease progression in mice infected with wild-type parasites, but not parasites expressing the resistance-conferring TgMyoA T130A mutation. Taken together, these data demonstrate the specificity of KNX-002 for TgMyoA, both in vitro and in vivo, and validate TgMyoA as a druggable target in infections with T. gondii. Since TgMyoA is essential for virulence, conserved in apicomplexan parasites, and distinctly different from the myosins found in humans, pharmacological inhibition of MyoA offers a promising new approach to treating the devastating diseases caused by T. gondii and other apicomplexan parasites.


Asunto(s)
Parásitos , Toxoplasma , Humanos , Animales , Ratones , Toxoplasma/genética , Miosinas , Mutación , Proteínas Protozoarias/genética
5.
Sci Rep ; 12(1): 18506, 2022 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-36323770

RESUMEN

SARS coronavirus 2 (SARS-CoV-2) has caused an ongoing global pandemic with significant mortality and morbidity. At this time, the only FDA-approved therapeutic for COVID-19 is remdesivir, a broad-spectrum antiviral nucleoside analog. Efficacy is only moderate, and improved treatment strategies are urgently needed. To accomplish this goal, we devised a strategy to identify compounds that act synergistically with remdesivir in preventing SARS-CoV-2 replication. We conducted combinatorial high-throughput screening in the presence of submaximal remdesivir concentrations, using a human lung epithelial cell line infected with a clinical isolate of SARS-CoV-2. This identified 20 approved drugs that act synergistically with remdesivir, many with favorable pharmacokinetic and safety profiles. Strongest effects were observed with established antivirals, Hepatitis C virus nonstructural protein 5A (HCV NS5A) inhibitors velpatasvir and elbasvir. Combination with their partner drugs sofosbuvir and grazoprevir further increased efficacy, increasing remdesivir's apparent potency > 25-fold. We report that HCV NS5A inhibitors act on the SARS-CoV-2 exonuclease proofreader, providing a possible explanation for the synergy observed with nucleoside analog remdesivir. FDA-approved Hepatitis C therapeutics Epclusa® (velpatasvir/sofosbuvir) and Zepatier® (elbasvir/grazoprevir) could be further optimized to achieve potency and pharmacokinetic properties that support clinical evaluation in combination with remdesivir.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Hepatitis C , Humanos , SARS-CoV-2 , Antivirales/uso terapéutico , Sofosbuvir/farmacología , Nucleósidos/farmacología , Adenosina Monofosfato , Alanina , Hepacivirus , Hepatitis C/tratamiento farmacológico , Pulmón
6.
Nat Commun ; 13(1): 4503, 2022 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-35922434

RESUMEN

The COVID-19 pandemic is exacting an increasing toll worldwide, with new SARS-CoV-2 variants emerging that exhibit higher infectivity rates and that may partially evade vaccine and antibody immunity. Rapid deployment of non-invasive therapeutic avenues capable of preventing infection by all SARS-CoV-2 variants could complement current vaccination efforts and help turn the tide on the COVID-19 pandemic. Here, we describe a novel therapeutic strategy targeting the SARS-CoV-2 RNA using locked nucleic acid antisense oligonucleotides (LNA ASOs). We identify an LNA ASO binding to the 5' leader sequence of SARS-CoV-2 that disrupts a highly conserved stem-loop structure with nanomolar efficacy in preventing viral replication in human cells. Daily intranasal administration of this LNA ASO in the COVID-19 mouse model potently suppresses viral replication (>80-fold) in the lungs of infected mice. We find that the LNA ASO is efficacious in countering all SARS-CoV-2 "variants of concern" tested both in vitro and in vivo. Hence, inhaled LNA ASOs targeting SARS-CoV-2 represents a promising therapeutic approach to reduce or prevent transmission and decrease severity of COVID-19 in infected individuals. LNA ASOs are chemically stable and can be flexibly modified to target different viral RNA sequences and could be stockpiled for future coronavirus pandemics.


Asunto(s)
COVID-19 , SARS-CoV-2 , Administración Intranasal , Animales , Humanos , Ratones , Oligonucleótidos Antisentido/farmacología , Oligonucleótidos Antisentido/uso terapéutico , Pandemias/prevención & control , ARN Viral/genética
7.
Nat Genet ; 54(8): 1078-1089, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35879412

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes a range of symptoms in infected individuals, from mild respiratory illness to acute respiratory distress syndrome. A systematic understanding of host factors influencing viral infection is critical to elucidate SARS-CoV-2-host interactions and the progression of Coronavirus disease 2019 (COVID-19). Here, we conducted genome-wide CRISPR knockout and activation screens in human lung epithelial cells with endogenous expression of the SARS-CoV-2 entry factors ACE2 and TMPRSS2. We uncovered proviral and antiviral factors across highly interconnected host pathways, including clathrin transport, inflammatory signaling, cell-cycle regulation, and transcriptional and epigenetic regulation. We further identified mucins, a family of high molecular weight glycoproteins, as a prominent viral restriction network that inhibits SARS-CoV-2 infection in vitro and in murine models. These mucins also inhibit infection of diverse respiratory viruses. This functional landscape of SARS-CoV-2 host factors provides a physiologically relevant starting point for new host-directed therapeutics and highlights airway mucins as a host defense mechanism.


Asunto(s)
COVID-19 , Animales , COVID-19/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Epigénesis Genética , Humanos , Ratones , Mucinas/genética , SARS-CoV-2
9.
J Med Chem ; 64(20): 14930-14941, 2021 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-34636234

RESUMEN

The discovery of reldesemtiv, a second-generation fast skeletal muscle troponin activator (FSTA) that increases force production at submaximal stimulation frequencies, is reported. Property-based optimization of high throughput screening hit 1 led to compounds with improved free exposure and in vivo muscle activation potency compared to the first-generation FSTA, tirasemtiv. Reldesemtiv demonstrated increased muscle force generation in a phase 1 clinical trial and is currently being evaluated in clinical trials for the treatment of amyotrophic lateral sclerosis.


Asunto(s)
Descubrimiento de Drogas , Músculo Esquelético/efectos de los fármacos , Troponina/metabolismo , Relación Dosis-Respuesta a Droga , Humanos , Estructura Molecular , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Relación Estructura-Actividad
10.
PLoS Biol ; 19(10): e3001425, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34634033

RESUMEN

The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection causes Coronavirus Disease 2019 (COVID-19), a pandemic that seriously threatens global health. SARS-CoV-2 propagates by packaging its RNA genome into membrane enclosures in host cells. The packaging of the viral genome into the nascent virion is mediated by the nucleocapsid (N) protein, but the underlying mechanism remains unclear. Here, we show that the N protein forms biomolecular condensates with viral genomic RNA both in vitro and in mammalian cells. While the N protein forms spherical assemblies with homopolymeric RNA substrates that do not form base pairing interactions, it forms asymmetric condensates with viral RNA strands. Cross-linking mass spectrometry (CLMS) identified a region that drives interactions between N proteins in condensates, and deletion of this region disrupts phase separation. We also identified small molecules that alter the size and shape of N protein condensates and inhibit the proliferation of SARS-CoV-2 in infected cells. These results suggest that the N protein may utilize biomolecular condensation to package the SARS-CoV-2 RNA genome into a viral particle.


Asunto(s)
COVID-19/virología , Proteínas de la Nucleocápside de Coronavirus/metabolismo , SARS-CoV-2/metabolismo , Empaquetamiento del Genoma Viral/fisiología , Animales , COVID-19/metabolismo , Línea Celular Tumoral , Chlorocebus aethiops , Genoma Viral , Genómica , Células HEK293 , Humanos , Proteínas de la Nucleocápside/genética , Fosfoproteínas/metabolismo , Dominios Proteicos , ARN Viral/genética , SARS-CoV-2/genética , Células Vero
11.
J Med Chem ; 64(19): 14142-14152, 2021 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-34606259

RESUMEN

Hypercontractility of the cardiac sarcomere may be essential for the underlying pathological hypertrophy and fibrosis in genetic hypertrophic cardiomyopathies. Aficamten (CK-274) is a novel cardiac myosin inhibitor that was discovered from the optimization of indoline compound 1. The important advancement of the optimization was discovery of an Indane analogue (12) with a less restrictive structure-activity relationship that allowed for the rapid improvement of drug-like properties. Aficamten was designed to provide a predicted human half-life (t1/2) appropriate for once a day (qd) dosing, to reach steady state within two weeks, to have no substantial cytochrome P450 induction or inhibition, and to have a wide therapeutic window in vivo with a clear pharmacokinetic/pharmacodynamic relationship. In a phase I clinical trial, aficamten demonstrated a human t1/2 similar to predictions and was able to reach steady state concentration within the desired two-week window.


Asunto(s)
Miosinas Cardíacas/efectos de los fármacos , Cardiomiopatía Hipertrófica/tratamiento farmacológico , Descubrimiento de Drogas , Relación Dosis-Respuesta a Droga , Humanos , Estructura Molecular , Relación Estructura-Actividad
12.
ACS Infect Dis ; 7(8): 2337-2351, 2021 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-34129317

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), has emerged as a major global health threat. The COVID-19 pandemic has resulted in over 168 million cases and 3.4 million deaths to date, while the number of cases continues to rise. With limited therapeutic options, the identification of safe and effective therapeutics is urgently needed. The repurposing of known clinical compounds holds the potential for rapid identification of drugs effective against SARS-CoV-2. Here, we utilized a library of FDA-approved and well-studied preclinical and clinical compounds to screen for antivirals against SARS-CoV-2 in human pulmonary epithelial cells. We identified 13 compounds that exhibit potent antiviral activity across multiple orthogonal assays. Hits include known antivirals, compounds with anti-inflammatory activity, and compounds targeting host pathways such as kinases and proteases critical for SARS-CoV-2 replication. We identified seven compounds not previously reported to have activity against SARS-CoV-2, including B02, a human RAD51 inhibitor. We further demonstrated that B02 exhibits synergy with remdesivir, the only antiviral approved by the FDA to treat COVID-19, highlighting the potential for combination therapy. Taken together, our comparative compound screening strategy highlights the potential of drug repurposing screens to identify novel starting points for development of effective antiviral mono- or combination therapies to treat COVID-19.


Asunto(s)
Antivirales , COVID-19 , Antivirales/farmacología , Humanos , Pandemias , SARS-CoV-2
13.
bioRxiv ; 2021 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-32995779

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection causes COVID-19, a pandemic that seriously threatens global health. SARS-CoV-2 propagates by packaging its RNA genome into membrane enclosures in host cells. The packaging of the viral genome into the nascent virion is mediated by the nucleocapsid (N) protein, but the underlying mechanism remains unclear. Here, we show that the N protein forms biomolecular condensates with viral genomic RNA both in vitro and in mammalian cells. Phase separation is driven, in part, by hydrophobic and electrostatic interactions. While the N protein forms spherical assemblies with unstructured RNA, it forms asymmetric condensates with viral RNA strands that contain secondary structure elements. Cross-linking mass spectrometry identified a region that forms interactions between N proteins in condensates, and truncation of this region disrupts phase separation. We also identified small molecules that alter the formation of N protein condensates. These results suggest that the N protein may utilize biomolecular condensation to package the SARS-CoV-2 RNA genome into a viral particle.

14.
ACS Med Chem Lett ; 9(4): 354-358, 2018 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-29670700

RESUMEN

The identification and optimization of the first activators of fast skeletal muscle are reported. Compound 1 was identified from high-throughput screening (HTS) and subsequently found to improve muscle function via interaction with the troponin complex. Optimization of 1 for potency, metabolic stability, and physical properties led to the discovery of tirasemtiv (25), which has been extensively characterized in clinical trials for the treatment of amyotrophic lateral sclerosis.

15.
Cell ; 164(5): 836-7, 2016 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-26919420

RESUMEN

Posttranslational modifications control microtubule behavior, yet assigning roles to particular signals was hampered by lack of defined in vitro systems. In this issue of Cell, Valenstein and Roll-Mecak establish a biochemical platform to interrogate consequences of microtubule polyglutamylation, thereby providing important insights into the specificity and quantitative nature of cellular information transfer.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Microtúbulos/metabolismo , Procesamiento Proteico-Postraduccional , Paraplejía Espástica Hereditaria/metabolismo , Tubulina (Proteína)/metabolismo , Humanos
16.
Nat Med ; 18(3): 452-5, 2012 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-22344294

RESUMEN

Limited neural input results in muscle weakness in neuromuscular disease because of a reduction in the density of muscle innervation, the rate of neuromuscular junction activation or the efficiency of synaptic transmission. We developed a small-molecule fast-skeletal-troponin activator, CK-2017357, as a means to increase muscle strength by amplifying the response of muscle when neural input is otherwise diminished secondary to neuromuscular disease. Binding selectively to the fast-skeletal-troponin complex, CK-2017357 slows the rate of calcium release from troponin C and sensitizes muscle to calcium. As a consequence, the force-calcium relationship of muscle fibers shifts leftwards, as does the force-frequency relationship of a nerve-muscle pair, so that CK-2017357 increases the production of muscle force in situ at sub-maximal nerve stimulation rates. Notably, we show that sensitization of the fast-skeletal-troponin complex to calcium improves muscle force and grip strength immediately after administration of single doses of CK-2017357 in a model of the neuromuscular disease myasthenia gravis. Troponin activation may provide a new therapeutic approach to improve physical activity in diseases where neuromuscular function is compromised.


Asunto(s)
Calcio/metabolismo , Músculo Esquelético/metabolismo , Enfermedades Neuromusculares/metabolismo , Troponina C/agonistas , Troponina C/metabolismo , Adenosina Trifosfatasas/metabolismo , Animales , Bovinos , Humanos , Imidazoles/química , Imidazoles/uso terapéutico , Terapia Molecular Dirigida , Contracción Muscular/efectos de los fármacos , Fibras Musculares Esqueléticas/citología , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/patología , Miastenia Gravis/tratamiento farmacológico , Miastenia Gravis/metabolismo , Miastenia Gravis/patología , Miosinas/aislamiento & purificación , Miosinas/metabolismo , Enfermedades Neuromusculares/tratamiento farmacológico , Enfermedades Neuromusculares/patología , Pirazinas/química , Pirazinas/uso terapéutico , Conejos , Ratas , Troponina/metabolismo , Troponina/fisiología
17.
Mol Cell ; 28(6): 1083-92, 2007 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-18158904

RESUMEN

The SecY complex associates with the ribosome to form a protein translocation channel in the bacterial plasma membrane. We have used cryo-electron microscopy and quantitative mass spectrometry to show that a nontranslating E. coli ribosome binds to a single SecY complex. The crystal structure of an archaeal SecY complex was then docked into the electron density maps. In the resulting model, two cytoplasmic loops of SecY extend into the exit tunnel near proteins L23, L29, and L24. The loop between transmembrane helices 8 and 9 interacts with helices H59 and H50 in the large subunit RNA, while the 6/7 loop interacts with H7. We also show that point mutations of basic residues within either loop abolish ribosome binding. We suggest that SecY binds to this primary site on the ribosome and subsequently captures and translocates the nascent chain.


Asunto(s)
Membrana Celular/metabolismo , Proteínas de Escherichia coli/metabolismo , Ribosomas/metabolismo , Proteínas Arqueales/química , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Microscopía por Crioelectrón , Cristalización , Electroforesis en Gel de Poliacrilamida , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Modelos Moleculares , Mutación Puntual , Unión Proteica , Estructura Terciaria de Proteína , Transporte de Proteínas , ARN Ribosómico/metabolismo , Ribosomas/química , Ribosomas/ultraestructura , Canales de Translocación SEC
18.
Mol Cell ; 26(4): 501-9, 2007 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-17531809

RESUMEN

The channel formed by the SecY complex must maintain the membrane barrier for ions and other small molecules during the translocation of membrane or secretory proteins. We have tested the permeability of the channel by using planar bilayers containing reconstituted purified E. coli SecY complex. Wild-type SecY complex did not show any conductance for ions or water. Deletion of the "plug," a short helix normally located in the center of the SecY complex, or modification of a cysteine introduced into the plug resulted in transient channel openings; a similar effect was seen with a mutation in the pore ring, a constriction in the center of the channel. Permanent channel opening occurred when the plug was moved out of the way by disulfide-bridge formation. These data show that the resting channel on its own forms a barrier for small molecules, with both the pore ring and the plug required for the seal; channel opening requires movement of the plug.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas Bacterianas/metabolismo , Transporte Biológico , Membrana Celular/ultraestructura , Permeabilidad de la Membrana Celular , Proteínas de Escherichia coli/genética , Membrana Dobles de Lípidos , Mutación , Transporte de Proteínas , Canales de Translocación SEC , Eliminación de Secuencia
19.
Mol Biol Cell ; 17(9): 3860-9, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16822833

RESUMEN

We have addressed how ribosome-nascent chain complexes (RNCs), associated with the signal recognition particle (SRP), can be targeted to Sec61 translocation channels of the endoplasmic reticulum (ER) membrane when all binding sites are occupied by nontranslating ribosomes. These competing ribosomes are known to be bound with high affinity to tetramers of the Sec61 complex. We found that the membrane binding of RNC-SRP complexes does not require or cause the dissociation of prebound nontranslating ribosomes, a process that is extremely slow. SRP and its receptor target RNCs to a free population of Sec61 complex, which associates with nontranslating ribosomes only weakly and is conformationally different from the population of ribosome-bound Sec61 complex. Taking into account recent structural data, we propose a model in which SRP and its receptor target RNCs to a Sec61 subpopulation of monomeric or dimeric state. This could explain how RNC-SRP complexes can overcome the competition by nontranslating ribosomes.


Asunto(s)
Retículo Endoplásmico Rugoso/metabolismo , Membranas Intracelulares/metabolismo , Biosíntesis de Proteínas , Ribosomas/metabolismo , Animales , Anticuerpos/inmunología , Bovinos , Perros , Proteínas de la Membrana/metabolismo , Microsomas/metabolismo , Modelos Biológicos , Canales de Translocación SEC , Partícula de Reconocimiento de Señal/metabolismo
20.
Curr Biol ; 13(6): 504-9, 2003 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-12646134

RESUMEN

Phosphoinositides control many different processes required for normal cellular function. Myotubularins are a family of Phosphatidylinositol 3-phosphate (PtdIns3P) phosphatases identified by the positional cloning of the MTM1 gene in patients suffering from X-linked myotubular myopathy and the MTMR2 gene in patients suffering from the demyelinating neuropathy Charcot-Marie-Tooth disease type 4B. MTM1 is a phosphatidylinositol phosphatase with reported specificity toward PtdIns3P, while the related proteins MTMR2 and MTMR3 hydrolyze both PtdIns3P and PtdIns(3,5)P2. We have investigated MTM1 and MTMR6 and find that they use PtdIns(3,5)P2 in addition to PtdIns3P as a substrate in vitro. The product of PtdIns(3,5)P2 hydrolysis, PtdIns5P, causes MTM1 to form a heptameric ring that is 12.5 nm in diameter, and it is a specific allosteric activator of MTM1, MTMR3, and MTMR6. A disease-causing mutation at arginine 69 of MTM1 falling within a putative pleckstrin homology domain reduces the ability of the enzyme to respond to PtdIns5P. We propose that the myotubularin family of enzymes utilize both PtdIns3P and PtdIns(3,5)P2 as substrates, and that PtdIns5P functions in a positive feedback loop controlling their activity. These findings highlight the importance of regulated phosphatase activity for the control of phosphoinositide metabolism.


Asunto(s)
Fosfatos de Fosfatidilinositol/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Activación Enzimática , Humanos , Mutación/genética , Proteínas Tirosina Fosfatasas/genética , Proteínas Tirosina Fosfatasas no Receptoras , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...