Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 25(38): 25965-25978, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37646123

RESUMEN

Transference numbers play an important role in understanding the dynamics of electrolytes and assessing their performance in batteries. Unfortunately, these transport parameters are difficult to measure in highly concentrated liquid electrolytes such as ionic liquids. Also, the interpretation of their sign and magnitude has provoked an ongoing debate in the literature further complicated by the use of different languages. In this work, we highlight the role of the reference frame for the interpretation of transport parameters using our novel thermodynamically consistent theory for highly correlated electrolytes. We argue that local volume conservation is a key principle in incompressible liquid electrolytes and use the volume-based drift velocity as a reference. We apply our general framework to electrophoretic NMR experiments. For ionic liquid based electrolytes, we find that the results of the eNMR measurements can be best described using this volume-based description. This highlights the limitations of the widely used center-of-mass reference frame which for example forms the basis for molecular dynamics simulations - a standard tool for the theoretical calculation of transport parameters. It shows that the assumption of local momentum conservation is incorrect in those systems on the macroscopic scale.

2.
J Phys Chem Lett ; 13(37): 8761-8767, 2022 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-36102654

RESUMEN

While ion transport processes in concentrated electrolytes, e.g., based on ionic liquids (IL), are a subject of intense research, the role of conservation laws and reference frames is still a matter of debate. Employing electrophoretic NMR, we show that momentum conservation, a typical prerequisite in molecular dynamics (MD) simulations, is not governing ion transport. Involving density measurements to determine molar volumes of distinct ion species, we propose that conservation of local molar species volumes is the governing constraint for ion transport. The experimentally quantified net volume flux is found to be zero, implying a nonzero local momentum flux, as tested in pure ILs and IL-based electrolytes for a broad variety of concentrations and chemical compositions. This constraint is consistent with incompressibility, but not with a local application of momentum conservation. The constraint affects the calculation of transference numbers as well as comparisons of MD results to experimental findings.

3.
J Phys Chem B ; 126(14): 2761-2776, 2022 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-35363492

RESUMEN

Ionic liquids offer unique bulk and interfacial characteristics as battery electrolytes. Our continuum approach naturally describes the electrolyte on a macroscale. An integral formulation for the molecular repulsion, which can be quantitatively determined by both experimental and theoretical methods, models the electrolyte on the nanoscale. In this article, we perform a systematic series expansion of this integral formulation, derive a description of chemical potentials in terms of higher-order concentration gradients, and rationalize the appearance of fourth-order derivative operators in modified Poisson equations, as recently proposed in this context. In this way, we formulate a rigorous multiscale methodology from atomistic quantum chemistry calculations to phenomenological continuum models. We apply our generalized framework to ionic liquids near electrified interfaces and perform analytical asymptotic analysis. Three energy scales describing electrostatic forces between ions, molecular repulsion, and thermal motion determine the shape and width of the long-ranging charged double layer. We classify the charge screening mechanisms dependent on the system parameters as dielectricity, ion size, interaction strength, and temperature. We find that the charge density of electrochemical double layers in ionic liquids either decays exponentially, for negligible molecular repulsion, or oscillates continuously. Charge ordering across several ion diameters occurs if the repulsion between molecules is comparable with thermal energy and Coulomb interactions. Eventually, phase separation of the bulk electrolyte into ionic layers emerges once the molecular repulsion becomes dominant. Our framework predicts the exact phase boundaries among these three phases as a function of temperature, dielectricity, and ion size.

4.
Phys Chem Chem Phys ; 20(7): 4760-4771, 2018 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-29379921

RESUMEN

Ionic liquids (ILs) form a multilayered structure at the solid/electrolyte interface, and the addition of solutes can alter it. For this purpose, we have investigated the influence of the silver bis(trifluoromethylsulfonyl)amide (AgTFSA) concentration in 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide ([Py1,4]TFSA) on the layering using in situ atomic force microscopy. AFM investigations revealed that the Au(111)/electrolyte interface indeed depends on the concentration of the salt where a typical " IL" multilayered structure is retained only at quite low concentrations of the silver salt (e.g. ≤200 µM). However, at 200 µM AgTFSA/[Py1,4]TFSA and above this "IL" multilayered structure is disturbed/varied. A simple double layer structure was observed at 500 µM AgTFSA in [Py1,4]TFSA. Furthermore, the widths of the innermost layers have been found to be dependent on the concentration and on the applied electrode potentials. Our AFM results show that the concentration of solutes strongly influences the structure of the electrode/electrolyte interface and can provide new insights into the electrical double layer structure of the electrode/ionic liquid interface. We also introduce a semi-continuum theory to discuss the double layer structure.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA