Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Am Soc Mass Spectrom ; 30(12): 2795-2804, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31720974

RESUMEN

Mass spectrometry (MS)-based protein footprinting, a valuable structural tool in mapping protein-ligand interaction, has been extensively applied to protein-protein complexes, showing success in mapping large interfaces. Here, we utilized an integrated footprinting strategy incorporating both hydrogen-deuterium exchange (HDX) and hydroxyl radical footprinting (i.e., fast photochemical oxidation of proteins (FPOP)) for molecular-level characterization of the interaction of human bromodomain-containing protein 4 (BRD4) with a hydrophobic benzodiazepine inhibitor. HDX does not provide strong evidence for the location of the binding interface, possibly because the shielding of solvent by the small molecule is not large. Instead, HDX suggests that BRD4 appears to be stabilized by showing a modest decrease in dynamics caused by binding. In contrast, FPOP points to a critical binding region in the hydrophobic cavity, also identified by crystallography, and, therefore, exhibits higher sensitivity than HDX in mapping the interaction of BRD4 with compound 1. In the absence or under low concentrations of the radical scavenger, FPOP modifications on Met residues show significant differences that reflect the minor change in protein conformation. This problem can be avoided by using a sufficient amount of proper scavenger, as suggested by the FPOP kinetics directed by a dosimeter of the hydroxyl radical.


Asunto(s)
Benzodiazepinas/farmacología , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/metabolismo , Espectrometría de Masas en Tándem/métodos , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/metabolismo , Benzodiazepinas/química , Proteínas de Ciclo Celular/química , Medición de Intercambio de Deuterio/métodos , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Radical Hidroxilo/análisis , Radical Hidroxilo/metabolismo , Modelos Moleculares , Conformación Proteica/efectos de los fármacos , Factores de Transcripción/química
2.
Nature ; 563(7732): 584-588, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30420606

RESUMEN

Protein structures are dynamic and can explore a large conformational landscape1,2. Only some of these structural substates are important for protein function (such as ligand binding, catalysis and regulation)3-5. How evolution shapes the structural ensemble to optimize a specific function is poorly understood3,4. One of the constraints on the evolution of proteins is the stability of the folded 'native' state. Despite this, 44% of the human proteome contains intrinsically disordered peptide segments greater than 30 residues in length6, the majority of which have no known function7-9. Here we show that the entropic force produced by an intrinsically disordered carboxy terminus (ID-tail) shifts the conformational ensemble of human UDP-α-D-glucose-6-dehydrogenase (UGDH) towards a substate with a high affinity for an allosteric inhibitor. The function of the ID-tail does not depend on its sequence or chemical composition. Instead, the affinity enhancement can be accurately predicted based on the length of the intrinsically disordered segment, and is consistent with the entropic force generated by an unstructured peptide attached to the protein surface10-13. Our data show that the unfolded state of the ID-tail rectifies the dynamics and structure of UGDH to favour inhibitor binding. Because this entropic rectifier does not have any sequence or structural constraints, it is an easily acquired adaptation. This model implies that evolution selects for disordered segments to tune the energy landscape of proteins, which may explain the persistence of intrinsic disorder in the proteome.


Asunto(s)
Entropía , Evolución Molecular , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/metabolismo , Uridina Difosfato Glucosa Deshidrogenasa/química , Uridina Difosfato Glucosa Deshidrogenasa/metabolismo , Regulación Alostérica/efectos de los fármacos , Secuencia de Aminoácidos , Humanos , Proteínas Intrínsecamente Desordenadas/antagonistas & inhibidores , Modelos Moleculares , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Conformación Proteica , Pliegue de Proteína , Desplegamiento Proteico , Proteoma/química , Proteoma/metabolismo , Especificidad por Sustrato , Uridina Difosfato Glucosa Deshidrogenasa/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA