Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 6: 26663, 2016 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-27215469

RESUMEN

The electronic band structure of MoS2, MoSe2, WS2, and WSe2, crystals has been studied at various hydrostatic pressures experimentally by photoreflectance (PR) spectroscopy and theoretically within the density functional theory (DFT). In the PR spectra direct optical transitions (A and B) have been clearly observed and pressure coefficients have been determined for these transitions to be: αA = 2.0 ± 0.1 and αB = 3.6 ± 0.1 meV/kbar for MoS2, αA = 2.3 ± 0.1 and αB = 4.0 ± 0.1 meV/kbar for MoSe2, αA = 2.6 ± 0.1 and αB = 4.1 ± 0.1 meV/kbar for WS2, αA = 3.4 ± 0.1 and αB = 5.0 ± 0.5 meV/kbar for WSe2. It has been found that these coefficients are in an excellent agreement with theoretical predictions. In addition, a comparative study of different computational DFT approaches has been performed and analyzed. For indirect gap the pressure coefficient have been determined theoretically to be -7.9, -5.51, -6.11, and -3.79, meV/kbar for MoS2, MoSe2, WS2, and WSe2, respectively. The negative values of this coefficients imply a narrowing of the fundamental band gap with the increase in hydrostatic pressure and a semiconductor to metal transition for MoS2, MoSe2, WS2, and WSe2, crystals at around 140, 180, 190, and 240 kbar, respectively.

2.
Plasmonics ; 9: 545-551, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24834018

RESUMEN

We investigate the ultrafast dynamics of carriers in a silicon nanostructure by performing spectrally resolved femtosecond spectroscopy measurements with a supercontinuum probe. The nanostructure consists of a 158-nm-thick crystalline Si layer on top of which a SiO2 passivation layer leads to a very high quality of the Si surface. In addition, a dielectric function approach, including contributions from a Drude part and interband transitions, combined with the Transition Matrix Approximation is used to model the photogenerated carrier dynamics. The spectrotemporal reflectivity reveals two mechanisms. First, an electron-hole plasma is created by the pump pulse and lasts for a few picoseconds. Importantly, its spectral signature is either a positive or a negative change of reflectivity, depending on the probe wavelength. This is complementary to the already reported results obtained with degenerate frequency measurements. The second mechanism is a thermal diffusion of carriers which occurs during several hundreds of picoseconds. The overall dynamics at short and long delays in the whole visible spectrum is well explained with our model which shows that the main contribution to the reflectivity dynamics is due to the Drude dielectric function. The observation of this predominance of free carriers requires both a long lived high density of carriers as well as a little influence of surface scattering as provided by our thin crystalline Si layer with passivated Si/SiO2 interface.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...