Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Blood Cancer J ; 14(1): 27, 2024 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-38331870

RESUMEN

Despite recent advances in frontline therapy for diffuse large B-cell lymphoma (DLBCL), at least a third of those diagnosed still will require second or further lines for relapsed or refractory (rel/ref) disease. A small minority of these can be cured with standard chemoimmunotherapy/stem-cell transplant salvage approaches. CD19-directed chimeric antigen receptor T-cell (CAR-19) therapies are increasingly altering the prognostic landscape for rel/ref patients with DLBCL and related aggressive B-cell non-Hodgkin lymphomas. Long-term follow up data show ongoing disease-free outcomes consistent with cure in 30-40% after CAR-19, including high-risk patients primary refractory to or relapsing within 1 year of frontline treatment. This has made CAR-19 a preferred option for these difficult-to-treat populations. Widespread adoption, however, remains challenged by logistical and patient-related hurdles, including a requirement for certified tertiary care centers concentrated in urban centers, production times of at least 3-4 weeks, and high per-patients costs similar to allogeneic bone-marrow transplantation. Bispecific antibodies (BsAbs) are molecular biotherapies designed to bind and activate effector T-cells and drive them to B-cell antigens, leading to a similar cellular-dependent cytotoxicity as CAR-19. May and June of 2023 saw initial approvals of next-generation BsAbs glofitamab and epcoritamab in DLBCL as third or higher-line therapy, or for patients ineligible for CAR-19. BsAbs have similar spectrum but generally reduced severity of immune related side effects as CAR-19 and can be administered in community settings without need to manufacture patient-specific cellular products. To date and in contrast to CAR-19, however, there is no convincing evidence of cure after BsAbs monotherapy, though follow up is limited. The role of BsAbs in DLBCL treatment is rapidly evolving with trials investigating use in both relapsed and frontline curative-intent combinations. The future of DLBCL treatment is bound increasingly to include effector cell mediated immunotherapies, but further optimization of both cellular and BsAb approaches is needed.


Asunto(s)
Anticuerpos Biespecíficos , Linfoma de Células B Grandes Difuso , Humanos , Anticuerpos Biespecíficos/uso terapéutico , Recurrencia Local de Neoplasia/etiología , Linfoma de Células B Grandes Difuso/patología , Inmunoterapia , Linfocitos T , Inmunoterapia Adoptiva/efectos adversos
2.
Leuk Lymphoma ; 64(14): 2217-2224, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37933565

RESUMEN

Chimeric antigen receptor T-cell therapy targeting CD19 (CAR-19) promotes impressive durable remissions for relapsed or refractory (rel/ref) large B-cell lymphoma (LBCL) patients with historically poor prognoses. Despite this, over half of patients still fail to respond or eventually progress. Studies to reveal mechanisms of resistance have examined host clinical parameters, CAR-19 product composition, and tumor microenvironment (TME) alterations, while a relative paucity of studies has analyzed contributions by genomic alterations in tumor cells. Factors associated with outcome include increased tumor volume, specific characteristics of infused CAR-T products, infiltration by myeloid cells in tumor microenvironments, and markers of complexity in LBCL genomes. Functional laboratory studies of resistance are largely absent in the current literature, illustrating a need for experiments in genetically accurate immunocompetent systems to confirm candidate alterations' roles in resistance and inform future improvements. In this review, we highlight key studies that have elucidated biomarkers of resistance in hosts, CAR products, TMEs, and comparatively understudied tumor-intrinsic mediators encoded by tumor genomes. We conclude with an experimental framework suitable for CAR-19 resistance biomarker identification and laboratory functional validation.


Asunto(s)
Linfoma de Células B Grandes Difuso , Receptores Quiméricos de Antígenos , Humanos , Receptores de Antígenos de Linfocitos T/genética , Linfocitos T , Linfoma de Células B Grandes Difuso/terapia , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Inmunoterapia Adoptiva , Antígenos CD19 , Tratamiento Basado en Trasplante de Células y Tejidos , Microambiente Tumoral
3.
Blood Adv ; 7(16): 4528-4538, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37026796

RESUMEN

Checkpoint inhibitor (CPI) therapy with anti-PD-1 antibodies has been associated with mixed outcomes in small cohorts of patients with relapsed aggressive B-cell lymphomas after CAR-T failure. To define CPI therapy efficacy more definitively in this population, we retrospectively evaluated clinical outcomes in a large cohort of 96 patients with aggressive B-cell lymphomas receiving CPI therapy after CAR-T failure across 15 US academic centers. Most patients (53%) had diffuse large B-cell lymphoma, were treated with axicabtagene ciloleucel (53%), relapsed early (≤180 days) after CAR-T (83%), and received pembrolizumab (49%) or nivolumab (43%). CPI therapy was associated with an overall response rate of 19% and a complete response rate of 10%. Median duration of response was 221 days. Median progression-free survival (PFS) and overall survival (OS) were 54 and 159 days, respectively. Outcomes to CPI therapy were significantly improved in patients with primary mediastinal B-cell lymphoma. PFS (128 vs 51 days) and OS (387 vs 131 days) were significantly longer in patients with late (>180 days) vs early (≤180 days) relapse after CAR-T. Grade ≥3 adverse events occurred in 19% of patients treated with CPI. Most patients (83%) died, commonly because of progressive disease. Only 5% had durable responses to CPI therapy. In the largest cohort of patients with aggressive B-cell lymphoma treated with CPI therapy after CAR-T relapse, our results reveal poor outcomes, particularly among those relapsing early after CAR-T. In conclusion, CPI therapy is not an effective salvage strategy for most patients after CAR-T, where alternative approaches are needed to improve post-CAR-T outcomes.


Asunto(s)
Linfoma de Células B Grandes Difuso , Receptores Quiméricos de Antígenos , Humanos , Estudios Retrospectivos , Recurrencia Local de Neoplasia , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Inmunoterapia Adoptiva/métodos
4.
Blood ; 140(5): 491-503, 2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35476848

RESUMEN

CD19-directed chimeric antigen receptor (CAR-19) T cells are groundbreaking immunotherapies approved for use against large B-cell lymphomas. Although host inflammatory and tumor microenvironmental markers associate with efficacy and resistance, the tumor-intrinsic alterations underlying these phenomena remain undefined. CD19 mutations associate with resistance but are uncommon, and most patients with relapsed disease retain expression of the wild-type receptor, implicating other genomic mechanisms. We therefore leveraged the comprehensive resolution of whole-genome sequencing to assess 51 tumor samples from 49 patients with CAR-19-treated large B-cell lymphoma. We found that the pretreatment presence of complex structural variants, APOBEC mutational signatures, and genomic damage from reactive oxygen species predict CAR-19 resistance. In addition, the recurrent 3p21.31 chromosomal deletion containing the RHOA tumor suppressor was strongly enriched in patients for whom CAR T-cell therapy failed. Pretreatment reduced expression or monoallelic loss of CD19 did not affect responses, suggesting CAR-19 therapy success and resistance are related to multiple mechanisms. Our study showed that tumor-intrinsic genomic alterations are key among the complex interplay of factors that underlie CAR-19 efficacy and resistance for large B-cell lymphomas.


Asunto(s)
Linfoma de Células B Grandes Difuso , Receptores Quiméricos de Antígenos , Antígenos CD19 , Genómica , Humanos , Inmunoterapia Adoptiva , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/terapia , Receptores de Antígenos de Linfocitos T/genética , Linfocitos T , Insuficiencia del Tratamiento
5.
STAR Protoc ; 3(4): 101919, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36595908

RESUMEN

Here, we present a protocol using MATRIX (mass spectrometry analysis of active translation factors using ribosome density fractionation and isotopic labeling experiments) platform to investigate changes of the protein synthesis machinery in U87MG glioblastoma cells in response to the rocaglate silvestrol. This protocol describes steps to perform SILAC (stable isotope labeling by amino acids in cell culture), ribosome density fractionation, protein isolation, and mass spectrometry analysis. This approach can be applied to study any adaptive remodeling of protein synthesis machineries. For complete details on the use and execution of this protocol, please refer to Ho et al. (2021).1.


Asunto(s)
Glioblastoma , Humanos , Proteómica/métodos , Proteínas/química , Aminoácidos/metabolismo , Espectrometría de Masas/métodos
6.
Blood ; 138(26): 2828-2837, 2021 12 30.
Artículo en Inglés | MEDLINE | ID: mdl-34653242

RESUMEN

Signaling through JAK1 and/or JAK2 is common among tumor and nontumor cells within peripheral T-cell lymphoma (PTCL). No oral therapies are approved for PTCL, and better treatments for relapsed/refractory disease are urgently needed. We conducted a phase 2 study of the JAK1/2 inhibitor ruxolitinib for patients with relapsed/refractory PTCL (n = 45) or mycosis fungoides (MF) (n = 7). Patients enrolled onto 1 of 3 biomarker-defined cohorts: (1) activating JAK and/or STAT mutations, (2) ≥30% pSTAT3 expression among tumor cells by immunohistochemistry, or (3) neither or insufficient tissue to assess. Patients received ruxolitinib 20 mg PO twice daily until progression and were assessed for response after cycles 2 and 5 and every 3 cycles thereafter. The primary endpoint was clinical benefit rate (CBR), defined as the combination of complete response, partial response (PR), and stable disease lasting at least 6 months. Only 1 of 7 patients with MF had CBR (ongoing PR > 18 months). CBR among the PTCL cases (n = 45) in cohorts 1, 2, and 3 were 53%, 45%, and 13% (cohorts 1 & 2 vs 3, P = .02), respectively. Eight patients had CBR > 12 months (5 ongoing), including 4 of 5 patients with T-cell large granular lymphocytic leukemia. In an exploratory analysis using multiplex immunofluorescence, expression of phosphorylated S6, a marker of PI3 kinase or mitogen-activated protein kinase activation, in <25% of tumor cells was associated with response to ruxolitinib (P = .05). Our findings indicate that ruxolitinib is active across various PTCL subtypes and support a precision therapy approach to JAK/STAT inhibition in patients with PTCL. This trial was registered at www.clincialtrials.gov as #NCT02974647.


Asunto(s)
Quinasas Janus/metabolismo , Linfoma de Células T Periférico/tratamiento farmacológico , Nitrilos/uso terapéutico , Inhibidores de Proteínas Quinasas/uso terapéutico , Pirazoles/uso terapéutico , Pirimidinas/uso terapéutico , Factores de Transcripción STAT/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Quinasas Janus/antagonistas & inhibidores , Linfoma de Células T Periférico/metabolismo , Masculino , Persona de Mediana Edad , Terapia Molecular Dirigida , Recurrencia Local de Neoplasia/tratamiento farmacológico , Recurrencia Local de Neoplasia/metabolismo , Resultado del Tratamiento , Adulto Joven
7.
Cell Rep ; 37(2): 109806, 2021 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-34644561

RESUMEN

Tactical disruption of protein synthesis is an attractive therapeutic strategy, with the first-in-class eIF4A-targeting compound zotatifin in clinical evaluation for cancer and COVID-19. The full cellular impact and mechanisms of these potent molecules are undefined at a proteomic level. Here, we report mass spectrometry analysis of translational reprogramming by rocaglates, cap-dependent initiation disruptors that include zotatifin. We find effects to be far more complex than simple "translational inhibition" as currently defined. Translatome analysis by TMT-pSILAC (tandem mass tag-pulse stable isotope labeling with amino acids in cell culture mass spectrometry) reveals myriad upregulated proteins that drive hitherto unrecognized cytotoxic mechanisms, including GEF-H1-mediated anti-survival RHOA/JNK activation. Surprisingly, these responses are not replicated by eIF4A silencing, indicating a broader translational adaptation than currently understood. Translation machinery analysis by MATRIX (mass spectrometry analysis of active translation factors using ribosome density fractionation and isotopic labeling experiments) identifies rocaglate-specific dependence on specific translation factors including eEF1ε1 that drive translatome remodeling. Our proteome-level interrogation reveals that the complete cellular response to these historical "translation inhibitors" is mediated by comprehensive translational landscape remodeling.


Asunto(s)
Biosíntesis de Proteínas/efectos de los fármacos , Inhibidores de la Síntesis de la Proteína/farmacología , Animales , Benzofuranos/farmacología , Línea Celular Tumoral , Factor 4A Eucariótico de Iniciación/efectos de los fármacos , Factor 4A Eucariótico de Iniciación/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos NOD , Cultivo Primario de Células , Biosíntesis de Proteínas/fisiología , Proteómica/métodos , Ribosomas/metabolismo , Transcriptoma/efectos de los fármacos , Transcriptoma/genética , Triterpenos/farmacología
8.
J Med Chem ; 64(21): 15727-15746, 2021 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-34676755

RESUMEN

Increased protein synthesis is a requirement for malignant growth, and as a result, translation has become a pharmaceutical target for cancer. The initiation of cap-dependent translation is enzymatically driven by the eukaryotic initiation factor (eIF)4A, an ATP-powered DEAD-box RNA-helicase that unwinds the messenger RNA secondary structure upstream of the start codon, enabling translation of downstream genes. A screen for inhibitors of eIF4A ATPase activity produced an intriguing hit that, surprisingly, was not ATP-competitive. A medicinal chemistry campaign produced the novel eIF4A inhibitor 28, which decreased BJAB Burkitt lymphoma cell viability. Biochemical and cellular studies, molecular docking, and functional assays uncovered that 28 is an RNA-competitive, ATP-uncompetitive inhibitor that engages a novel pocket in the RNA groove of eIF4A and inhibits unwinding activity by interfering with proper RNA binding and suppressing ATP hydrolysis. Inhibition of eIF4A through this unique mechanism may offer new strategies for targeting this promising intersection point of many oncogenic pathways.


Asunto(s)
Descubrimiento de Drogas , Factor 4F Eucariótico de Iniciación/antagonistas & inhibidores , Adenosina Trifosfatasas/antagonistas & inhibidores , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Linfoma de Burkitt/patología , Línea Celular Tumoral , Humanos , Conformación de Ácido Nucleico , ARN Mensajero/química
9.
Trends Biotechnol ; 39(10): 974-977, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33832781

RESUMEN

Chemotherapy remains the most widely used cancer treatment modality. Nanotechnology provides exciting opportunities to improve these drugs, transforming decades-old generic treatments into precise new medicines. We illustrate the potential of recent advances in nanotechnology-enhanced therapy focusing on diffuse large B-cell lymphoma (DLBCL); the most common hematologic malignancy.


Asunto(s)
Linfoma de Células B Grandes Difuso , Humanos , Nanotecnología , Medicina de Precisión
10.
Wiley Interdiscip Rev RNA ; 12(5): e1647, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33694288

RESUMEN

Responsible for generating the proteome that controls phenotype, translation is the ultimate convergence point for myriad upstream signals that influence gene expression. System-wide adaptive translational reprogramming has recently emerged as a pillar of cellular adaptation. As classic regulators of mRNA stability and translation efficiency, foundational studies established the concept of collaboration and competition between RNA-binding proteins (RBPs) and noncoding RNAs (ncRNAs) on individual mRNAs. Fresh conceptual innovations now highlight stress-activated, evolutionarily conserved RBP networks and ncRNAs that increase the translation efficiency of populations of transcripts encoding proteins that participate in a common cellular process. The discovery of post-transcriptional functions for long noncoding RNAs (lncRNAs) was particularly intriguing given their cell-type-specificity and historical definition as nuclear-functioning epigenetic regulators. The convergence of RBPs, lncRNAs, and microRNAs on functionally related mRNAs to enable adaptive protein synthesis is a newer biological paradigm that highlights their role as "translatome (protein output) remodelers" and reinvigorates the paradigm of "RNA operons." Together, these concepts modernize our understanding of cellular stress adaptation and strategies for therapeutic development. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications Translation > Translation Regulation Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs.


Asunto(s)
ARN Largo no Codificante , Proteínas de Unión al ARN , Estabilidad del ARN , ARN Largo no Codificante/genética , ARN Mensajero , ARN no Traducido/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
11.
Cancers (Basel) ; 13(4)2021 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-33562682

RESUMEN

Inhibition of the eIF4A RNA helicase with silvestrol and related compounds is emerging as a powerful anti-cancer strategy. We find that a synthetic silvestrol analogue (CR-1-31 B) has nanomolar activity across many cancer cell lines. It is especially active against aggressive MYC+/BCL2+ B cell lymphomas and this likely reflects the eIF4A-dependent translation of both MYC and BCL2. We performed a genome-wide CRISPR/Cas9 screen and identified mechanisms of resistance to this new class of therapeutics. We identify three negative NRF2 regulators (KEAP1, CUL3, CAND1) whose inactivation is sufficient to cause CR1-31-B resistance. NRF2 is known to alter the oxidation state of translation factors and cause a broad increase in protein production. We find that NRF2 activation particularly increases the translation of some eIF4A-dependent mRNAs and restores MYC and BCL2 production. We know that NRF2 functions depend on removal of sugar adducts by the frutosamine-3-kinase (FN3K). Accordingly, loss of FN3K results in NRF2 hyper-glycation and inactivation and resensitizes cancer cells to eIF4A inhibition. Together, our findings implicate NRF2 in the translation of eIF4A-dependent mRNAs and point to FN3K inhibition as a new strategy to block NRF2 functions in cancer.

12.
Trends Biochem Sci ; 46(3): 171-174, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33309326

RESUMEN

Global translational remodeling has emerged as a principal mechanism of biological adaptation. Oxygen deficiency (hypoxia) disables the basal protein synthesis machinery ('Jekyll') and activates a hypoxic translational architecture ('Hyde') to drive translatome remodeling. Independent from mRNA-level fluctuations, this newer paradigm modernizes a field traditionally dominated by the hypoxia-inducible factor (HIF) transcriptional program.


Asunto(s)
Hipoxia , Biosíntesis de Proteínas , Hipoxia de la Célula , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia , Oxígeno , ARN Mensajero/metabolismo
13.
Cancer Res ; 81(3): 763-775, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33177062

RESUMEN

New treatments are needed to address persistent unmet clinical needs for diffuse large B-cell lymphoma (DLBCL). Overexpression of transferrin receptor 1 (TFR1) is common across cancer and permits cell-surface targeting of specific therapies in preclinical and clinical studies of various solid tumors. Here, we developed novel nanocarrier delivery of chemotherapy via TFR1-mediated endocytosis, assessing this target for the first time in DLBCL. Analysis of published datasets showed novel association of increased TFR1 expression with high-risk DLBCL cases. Carbon-nitride dots (CND) are emerging nanoparticles with excellent in vivo stability and distribution and are adaptable to covalent conjugation with multiple substrates. In vitro, linking doxorubicin (Dox) and transferrin (TF) to CND (CND-Dox-TF, CDT) was 10-100 times more potent than Dox against DLBCL cell lines. Gain- and loss-of-function studies and fluorescent confocal microscopy confirmed dependence of these effects on TFR1-mediated endocytosis. In contrast with previous therapeutics directly linking Dox and TF, cytotoxicity of CDT resulted from nuclear entry by Dox, promoting double-stranded DNA breaks and apoptosis. CDT proved safe to administer in vivo, and when incorporated into standard frontline chemoimmunotherapy in place of Dox, it improved overall survival by controlling patient-derived xenograft tumors with greatly reduced host toxicities. Nanocarrier-mediated Dox delivery to cell-surface TFR1, therefore, warrants optimization as a potential new therapeutic option in DLBCL. SIGNIFICANCE: Targeted nanoparticle delivery of doxorubicin chemotherapy via the TRF1 receptor presents a new opportunity against high-risk DLBCL tumors using potency and precision.


Asunto(s)
Antibióticos Antineoplásicos/administración & dosificación , Antígenos CD/metabolismo , Doxorrubicina/administración & dosificación , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Nanopartículas/administración & dosificación , Receptores de Transferrina/metabolismo , Transferrina/administración & dosificación , Animales , Antibióticos Antineoplásicos/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Apoptosis , Línea Celular Tumoral , Núcleo Celular , Supervivencia Celular/efectos de los fármacos , Ciclofosfamida/administración & dosificación , Ciclofosfamida/farmacología , Roturas del ADN de Doble Cadena , Doxorrubicina/farmacología , Endocitosis , Linfoma de Células B Grandes Difuso/metabolismo , Linfoma de Células B Grandes Difuso/mortalidad , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , Nanoconjugados/administración & dosificación , Prednisona/administración & dosificación , Prednisona/farmacología , Rituximab/administración & dosificación , Rituximab/farmacología , Transferrina/farmacología , Vincristina/administración & dosificación , Vincristina/farmacología
14.
Nat Commun ; 11(1): 5755, 2020 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-33188200

RESUMEN

Translatome reprogramming is a primary determinant of protein levels during stimuli adaptation. This raises the question: what are the translatome remodelers that reprogram protein output to activate biochemical adaptations. Here, we identify a translational pathway that represses metabolism to safeguard genome integrity. A system-wide MATRIX survey identified the ancient eIF5A as a pH-regulated translation factor that responds to fermentation-induced acidosis. TMT-pulse-SILAC analysis identified several pH-dependent proteins, including the mTORC1 suppressor Tsc2 and the longevity regulator Sirt1. Sirt1 operates as a pH-sensor that deacetylates nuclear eIF5A during anaerobiosis, enabling the cytoplasmic export of eIF5A/Tsc2 mRNA complexes for translational engagement. Tsc2 induction inhibits mTORC1 to suppress cellular metabolism and prevent acidosis-induced DNA damage. Depletion of eIF5A or Tsc2 leads to metabolic re-initiation and proliferation, but at the expense of incurring substantial DNA damage. We suggest that eIF5A operates as a translatome remodeler that suppresses metabolism to shield the genome.


Asunto(s)
Daño del ADN , Factores de Iniciación de Péptidos/metabolismo , Biosíntesis de Proteínas , Proteínas de Unión al ARN/metabolismo , Acidosis/metabolismo , Acidosis/patología , Transporte Activo de Núcleo Celular , Adenosina Trifosfato/metabolismo , Hipoxia de la Célula , Línea Celular Tumoral , Núcleo Celular/metabolismo , Proliferación Celular , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/antagonistas & inhibidores , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Factores de Iniciación de Péptidos/genética , Proteómica , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Sirtuina 1/antagonistas & inhibidores , Sirtuina 1/metabolismo , Transcripción Genética , Proteína 2 del Complejo de la Esclerosis Tuberosa/genética , Proteína 2 del Complejo de la Esclerosis Tuberosa/metabolismo , Factor 5A Eucariótico de Iniciación de Traducción
15.
Nat Commun ; 11(1): 2677, 2020 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-32472050

RESUMEN

Protein expression evolves under greater evolutionary constraint than mRNA levels, and translation efficiency represents a primary determinant of protein levels during stimuli adaptation. This raises the question as to the translatome remodelers that titrate protein output from mRNA populations. Here, we uncover a network of RNA-binding proteins (RBPs) that enhances the translation efficiency of glycolytic proteins in cells responding to oxygen deprivation. A system-wide proteomic survey of translational engagement identifies a family of oxygen-regulated RBPs that functions as a switch of glycolytic intensity. Tandem mass tag-pulse SILAC (TMT-pSILAC) and RNA sequencing reveals that each RBP controls a unique but overlapping portfolio of hypoxic responsive proteins. These RBPs collaborate with the hypoxic protein synthesis apparatus, operating as a translation efficiency checkpoint that integrates upstream mRNA signals to activate anaerobic metabolism. This system allows anoxia-resistant animals and mammalian cells to initiate anaerobic glycolysis and survive hypoxia. We suggest that an oxygen-sensitive RBP cluster controls anaerobic metabolism to confer hypoxia tolerance.


Asunto(s)
Anaerobiosis/fisiología , Hipoxia de la Célula/fisiología , Glucólisis/fisiología , Proteínas de Unión al ARN/metabolismo , Células 3T3 , Células A549 , Animales , Caenorhabditis elegans/metabolismo , Línea Celular Tumoral , Perfilación de la Expresión Génica , Células HCT116 , Humanos , Ratones , Oxígeno/metabolismo , Células PC-3 , Biosíntesis de Proteínas/fisiología , Procesamiento Proteico-Postraduccional/genética , Proteómica , ARN Mensajero/genética
16.
Oncogene ; 39(10): 2103-2117, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31804622

RESUMEN

Rational new strategies are needed to treat tumors resistant to kinase inhibitors. Mechanistic studies of resistance provide fertile ground for development of new approaches. Cancer drug addiction is a paradoxical resistance phenomenon, well-described in MEK-ERK-driven solid tumors, in which drug-target overexpression promotes resistance but a toxic overdose of signaling if the inhibitor is withdrawn. This can permit prolonged control of tumors through intermittent dosing. We and others showed previously that cancer drug addiction arises also in the hematologic malignancy ALK-positive anaplastic large-cell lymphoma (ALCL) resistant to ALK-specific tyrosine kinase inhibitors (TKIs). This is driven by the overexpression of the fusion kinase NPM1-ALK, but the mechanism by which ALK overactivity drives toxicity upon TKI withdrawal remained obscure. Here we reveal the mechanism of ALK-TKI addiction in ALCL. We interrogated the well-described mechanism of MEK/ERK pathway inhibitor addiction in solid tumors and found it does not apply to ALCL. Instead, phosphoproteomics and confirmatory functional studies revealed that the STAT1 overactivation is the key mechanism of ALK-TKI addiction in ALCL. The withdrawal of TKI from addicted tumors in vitro and in vivo leads to overwhelming phospho-STAT1 activation, turning on its tumor-suppressive gene-expression program and turning off STAT3's oncogenic program. Moreover, a novel NPM1-ALK-positive ALCL PDX model showed a significant survival benefit from intermittent compared with continuous TKI dosing. In sum, we reveal for the first time the mechanism of cancer drug addiction in ALK-positive ALCL and the benefit of scheduled intermittent dosing in high-risk patient-derived tumors in vivo.


Asunto(s)
Quinasa de Linfoma Anaplásico/antagonistas & inhibidores , Resistencia a Antineoplásicos , Linfoma Anaplásico de Células Grandes/fisiopatología , Inhibidores de Proteínas Quinasas/farmacología , Factor de Transcripción STAT1/metabolismo , Transducción de Señal , Quinasa de Linfoma Anaplásico/genética , Quinasa de Linfoma Anaplásico/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Humanos , Linfoma Anaplásico de Células Grandes/enzimología , Linfoma Anaplásico de Células Grandes/genética , Linfoma Anaplásico de Células Grandes/metabolismo , Nucleofosmina , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteómica , Factor de Transcripción STAT3/genética
17.
Case Rep Hematol ; 2019: 1825491, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31827948

RESUMEN

Involvement of the central nervous system by chronic lymphocytic leukemia/small lymphocytic lymphoma is exceedingly rare, and currently no risk factors have been described. We report the case of a patient with concomitant chronic lymphocytic leukemia/small lymphocytic lymphoma and an embolic cerebrovascular accident related to a cardiac myxoma, who developed parenchymal central nervous system involvement of lymphoma on the ischemic bed. The patient was successfully treated with a high-dose fludarabine-based chemotherapy regimen, achieving a sustained remission. We propose that embolic breakage of the blood-brain barrier may be a major risk factor in producing central nervous system involvement. We also propose that a high-dose fludarabine-based chemotherapy regimen may be adequate to achieve a better CNS penetration and improved outcomes.

18.
J Immunol ; 203(3): 585-592, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31332079

RESUMEN

Effector lymphocytes are multifunctional cells of the immune system that promote cytolysis of pathogen-infected cells and nascent tumors. Tumors must learn to evade effectors and employ a wide variety of mechanisms to do so. Bispecific Abs (BsAbs) are an emerging cancer immunotherapy approach seeking to re-engage either T effectors or NK cells with malignant cells. Possessing specificity for effector cells on one end and a tumor Ag on the other, these molecules work by attracting effectors to the target cell to build an immunologic synapse and induce tumor cell killing. The BsAb blinatumomab, for example, has specificity for the T cell-activating cell surface protein CD3 and the B cell Ag CD19. The only BsAb with regulatory approval currently, blinatumomab is used in the treatment of relapsed or refractory B cell acute lymphoblastic leukemia. Many additional BsAbs are in preclinical development, however, targeting many different tumor types. The variety of potential effector cells and cancer Ags, along with potential combination therapies, make BsAbs an active area of drug development. In this review, we discuss cancer recognition by the immune system and structural and mechanistic aspects of BsAbs. We summarize key steps in preclinical development and subsequent translation to medical practice. Future directions for BsAbs include combinations with a wide variety of both immunologic and nonimmunologic therapies. Defining their optimum clinical use is at early stages.


Asunto(s)
Anticuerpos Biespecíficos/inmunología , Anticuerpos Biespecíficos/farmacología , Antineoplásicos/farmacología , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Linfocitos T/inmunología , Antígenos CD19/inmunología , Antígenos de Neoplasias/inmunología , Complejo CD3/inmunología , Evaluación Preclínica de Medicamentos , Humanos , Inmunoterapia/métodos , Células Asesinas Naturales/inmunología , Activación de Linfocitos/inmunología , Leucemia-Linfoma Linfoblástico de Células Precursoras/inmunología
19.
J Oncol ; 2019: 4047617, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31186634

RESUMEN

Acute lymphoblastic leukemia and other aggressive lymphoid malignancies like Burkitt leukemia/lymphoma have high incidence of central nervous system (CNS) involvement. Various solid tumors, most notably breast cancer, can also metastasize into the CNS as a late stage complication causing devastating effects. Intrathecal (IT) chemotherapy consisting of methotrexate, cytarabine, or the two in combination is frequently used for the prophylaxis and treatment of CNS metastasis. Because of the high toxicity of these chemotherapeutic agents, however, their side effect profiles are potentially catastrophic. The incidence of neurotoxicity secondary to IT chemotherapy is well defined in the pediatric literature but is poorly reported in adults. Here, we investigated the incidence of neurologic and nonneurologic side effects secondary to IT chemotherapy in 109 consecutive adult patients over a two-year time period at hospitals associated with our institution. Of 355 IT chemotherapy treatments received by these patients, 11 (3.10%) resulted in paresthesias or paralysis, which we defined as significant neurologic events in our analysis. We also examined minor events that arose after IT chemotherapy, including back pain, headache, fever, vomiting, and asthenia. At least one of these occurred after 30.70% of IT chemotherapy doses. Clinicians involved in the care of patients receiving IT chemotherapy should be aware of these findings and consider treatment options lower rate of neurotoxicity such as high-dose systemic methotrexate.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...