Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
Eur Radiol ; 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38907886

RESUMEN

OBJECTIVES: To assess 3-Tesla (3-T) ultra-small superparamagnetic iron oxide (USPIO)-enhanced MRI in detecting lymph node (LN) metastases for resectable adenocarcinomas of the pancreas, duodenum, or periampullary region in a node-to-node validation against histopathology. METHODS: Twenty-seven consecutive patients with a resectable pancreatic, duodenal, or periampullary adenocarcinoma were enrolled in this prospective single expert centre study. Ferumoxtran-10-enhanced 3-T MRI was performed pre-surgery. LNs found on MRI were scored for suspicion of metastasis by two expert radiologists using a dedicated scoring system. Node-to-node matching from in vivo MRI to histopathology was performed using a post-operative ex vivo 7-T MRI of the resection specimen. Sensitivity and specificity were calculated using crosstabs. RESULTS: Eighteen out of 27 patients (median age 65 years, 11 men) were included in the final analysis (pre-surgery withdrawal n = 4, not resected because of unexpected metastases peroperatively n = 2, and excluded because of inadequate contrast-agent uptake n = 3). On MRI 453 LNs with a median size of 4.0 mm were detected, of which 58 (13%) were classified as suspicious. At histopathology 385 LNs with a median size of 5.0 mm were found, of which 45 (12%) were metastatic. For 55 LNs node-to-node matching was possible. Analysis of these 55 matched LNs, resulted in a sensitivity and specificity of 83% (95% CI: 36-100%) and 92% (95% CI: 80-98%), respectively. CONCLUSION: USPIO-enhanced MRI is a promising technique to preoperatively detect and localise LN metastases in patients with pancreatic, duodenal, or periampullary adenocarcinoma. CLINICAL RELEVANCE STATEMENT: Detection of (distant) LN metastases with USPIO-enhanced MRI could be used to determine a personalised treatment strategy that could involve neoadjuvant or palliative chemotherapy, guided resection of distant LNs, or targeted radiotherapy. REGISTRATION: The study was registered on clinicaltrials.gov NCT04311047. https://clinicaltrials.gov/ct2/show/NCT04311047?term=lymph+node&cond=Pancreatic+Cancer&cntry=NL&draw=2&rank=1 . KEY POINTS: LN metastases of pancreatic, duodenal, or periampullary adenocarcinoma cannot be reliably detected with current imaging. This technique detected LN metastases with a sensitivity and specificity of 83% and 92%, respectively. MRI with ferumoxtran-10 is a promising technique to improve preoperative staging in these cancers.

2.
NMR Biomed ; : e5180, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38775032

RESUMEN

Ultrahigh field magnetic resonance imaging (MRI) (≥ 7 T) has the potential to provide superior spatial resolution and unique image contrast. Apart from radiofrequency transmit inhomogeneities in the body at this field strength, imaging of the upper abdomen faces additional challenges associated with motion-induced ghosting artifacts. To address these challenges, the goal of this work was to develop a technique for high-resolution free-breathing upper abdominal MRI at 7 T with a large field of view. Free-breathing 3D gradient-recalled echo (GRE) water-excited radial stack-of-stars data were acquired in seven healthy volunteers (five males/two females, body mass index: 19.6-24.8 kg/m2) at 7 T using an eight-channel transceive array coil. Two volunteers were also examined at 3 T. In each volunteer, the liver and kidney regions were scanned in two separate acquisitions. To homogenize signal excitation, the time-interleaved acquisition of modes (TIAMO) method was used with personalized pairs of B1 shims, based on a 23-s Cartesian fast low angle shot (FLASH) acquisition. Utilizing free-induction decay navigator signals, respiratory-gated images were reconstructed at a spatial resolution of 0.8 × 0.8 × 1.0 mm3. Two experienced radiologists rated the image quality and the impact of B1 inhomogeneity and motion-related artifacts on multipoint scales. The images of all volunteers showcased effective water excitation and were accurately corrected for respiratory motion. The impact of B1 inhomogeneity on image quality was minimal, underscoring the efficacy of the multitransmit TIAMO shim. The high spatial resolution allowed excellent depiction of small structures such as the adrenal glands, the proximal ureter, the diaphragm, and small blood vessels, although some streaking artifacts persisted in liver image data. In direct comparisons with 3 T performed for two volunteers, 7-T acquisitions demonstrated increases in signal-to-noise ratio of 77% and 58%. Overall, this work demonstrates the feasibility of free-breathing MRI in the upper abdomen at submillimeter spatial resolution at a magnetic field strength of 7 T.

3.
Neuroradiology ; 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38714545

RESUMEN

INTRODUCTION: Dynamic susceptibility contrast (DSC) perfusion weighted (PW)-MRI can aid in differentiating treatment related abnormalities (TRA) from tumor progression (TP) in post-treatment glioma patients. Common methods, like the 'hot spot', or visual approach suffer from oversimplification and subjectivity. Using perfusion of the complete lesion potentially offers an objective and accurate alternative. This study aims to compare the diagnostic value and assess the subjectivity of these techniques. METHODS: 50 Glioma patients with enhancing lesions post-surgery and chemo-radiotherapy were retrospectively included. Outcome was determined by clinical/radiological follow-up or biopsy. Imaging analysis used the 'hot spot', volume of interest (VOI) and visual approach. Diagnostic accuracy was compared using receiving operator characteristics (ROC) curves for the VOI and 'hot spot' approach, visual assessment was analysed with contingency tables. Inter-operator agreement was determined with Cohens kappa and intra-class coefficient (ICC). RESULTS: 29 Patients suffered from TP, 21 had TRA. The visual assessment showed poor to substantial inter-operator agreement (κ = -0.72 - 0.68). Reliability of the 'hot spot' placement was excellent (ICC = 0.89), while reference placement was variable (ICC = 0.54). The area under the ROC (AUROC) of the mean- and maximum relative cerebral blood volume (rCBV) (VOI-analysis) were 0.82 and 0.72, while the rCBV-ratio ('hot spot' analysis) was 0.69. The VOI-analysis had a more balanced sensitivity and specificity compared to visual assessment. CONCLUSIONS: VOI analysis of DSC PW-MRI data holds greater diagnostic accuracy in single-moment differentiation of TP and TRA than 'hot spot' or visual analysis. This study underlines the subjectivity of visual placement and assessment.

4.
Neurooncol Adv ; 6(1): vdad168, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38196738

RESUMEN

Background: Survival outcomes for glioblastoma (GBM) patients remain unfavorable, and tumor recurrence is often observed. Understanding the radiological growth patterns of GBM could aid in improving outcomes. This study aimed to examine the relationship between contrast-enhancing tumor growth direction and white matter, using an image registration and deformation strategy. Methods: In GBM patients 2 pretreatment scans (diagnostic and neuronavigation) were gathered retrospectively, and coregistered to a template and diffusion tensor imaging (DTI) atlas. The GBM lesions were segmented and coregistered to the same space. Growth vectors were derived and divided into vector populations parallel (Φ = 0-20°) and perpendicular (Φ = 70-90°) to white matter. To test for statistical significance between parallel and perpendicular groups, a paired samples Student's t-test was performed. O6-methylguanine-DNA methyltransferase (MGMT) methylation status and its correlation to growth rate were also tested using a one-way ANOVA test. Results: For 78 GBM patients (mean age 61 years ±â€…13 SD, 32 men), the included GBM lesions showed a predominant preference for perineural satellitosis (P < .001), with a mean percentile growth of 30.8% (95% CI: 29.6-32.0%) parallel (0°â€…< |Φ| < 20°) to white matter. Perpendicular tumor growth with respect to white matter microstructure (70°â€…< |Φ| < 90°) showed to be 22.7% (95% CI: 21.3-24.1%) of total tumor growth direction. Conclusions: The presented strategy showed that tumor growth direction in pretreatment GBM patients correlated with white matter architecture. Future studies with patient-specific DTI data are required to verify the accuracy of this method prospectively to identify its usefulness as a clinical metric in pre and posttreatment settings.

5.
J Nucl Med ; 65(3): 423-429, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38176721

RESUMEN

Prostate-specific membrane antigen (PSMA)-targeted radioguided surgery (RGS) aims to optimize the peroperative detection and removal of PSMA-avid lymph node (LN) metastases (LNMs) and has been described in patients with recurrent prostate cancer (PCa). In newly diagnosed PCa patients undergoing pelvic LN dissections, PSMA RGS could guide the urologist toward PSMA-expressing LNMs as identified on preoperative 18F-PSMA PET/CT imaging. The objective was to evaluate the safety and feasibility of 111In-PSMA RGS in primary PCa patients with one or more suggestive LNs on preoperative 18F-PSMA PET/CT. Methods: This prospective, phase I/II study included 20 newly diagnosed PCa patients with at least 1 suggestive LN on preoperative 18F-PSMA PET/CT. PSMA RGS was performed 24 h after 111In-PSMA-I&T administration, and postoperative 18F-PSMA PET/CT was performed to verify successful removal of the suggestive lesions. The primary endpoint was determination of the safety and feasibility of 111In-PSMA RGS. Safety was assessed by monitoring adverse events. Feasibility was described as the possibility to peroperatively detect suggestive LNs as identified on preoperative imaging. Secondary outcomes included the accuracy of 111In-PSMA RGS compared with histopathology, tumor- and lesion-to-background ratios, and biochemical recurrence. Results: No tracer-related adverse events were reported. In 20 patients, 43 of 49 (88%) 18F-PSMA PET-suggestive lesions were successfully removed. 111In-PSMA RGS facilitated peroperative identification and resection of 29 of 49 (59%) RGS-target lesions, of which 28 (97%) contained LNMs. Another 14 of 49 (29%) resected LNs were not detected with 111In-PSMA RGS, of which 2 contained metastases. Conclusion: 111In-PSMA RGS is a safe and feasible procedure that allows peroperative detection of 18F-PSMA PET/CT-suggestive lesions in newly diagnosed PCa patients. The use of a radioactive PSMA tracer and a detection device (γ-probe) during surgery helps in identifying LNs that were suggestive of PCa metastases on the 18F-PSMA PET/CT before surgery and thus may improve the peroperative identification and removal of these LNs.


Asunto(s)
Tomografía Computarizada por Tomografía de Emisión de Positrones , Neoplasias de la Próstata , Masculino , Humanos , Metástasis Linfática/diagnóstico por imagen , Estudios Prospectivos , Próstata , Recurrencia Local de Neoplasia , Escisión del Ganglio Linfático , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/cirugía
6.
NMR Biomed ; 37(3): e5062, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37920145

RESUMEN

In this study, we investigated the potential of the multivariate curve resolution alternating least squares (MCR-ALS) algorithm for analyzing three-dimensional (3D) 1 H-MRSI data of the prostate in prostate cancer (PCa) patients. MCR-ALS generates relative intensities of components representing spectral profiles derived from a large training set of patients, providing an interpretable model. Our objectives were to classify magnetic resonance (MR) spectra, differentiating tumor lesions from benign tissue, and to assess PCa aggressiveness. We included multicenter 3D 1 H-MRSI data from 106 PCa patients across eight centers. The patient cohort was divided into a training set (N = 63) and an independent test set (N = 43). Singular value decomposition determined that MR spectra were optimally represented by five components. The profiles of these components were extracted from the training set by MCR-ALS and assigned to specific tissue types. Using these components, MCR-ALS was applied to the test set for a quantitative analysis to discriminate tumor lesions from benign tissue and to assess tumor aggressiveness. Relative intensity maps of the components were reconstructed and compared with histopathology reports. The quantitative analysis demonstrated a significant separation between tumor and benign voxels (t-test, p < 0.001). This result was achieved including voxels with low-quality MR spectra. A receiver operating characteristic analysis of the relative intensity of the tumor component revealed that low- and high-risk tumor lesions could be distinguished with an area under the curve of 0.88. Maps of this component properly identified the extent of tumor lesions. Our study demonstrated that MCR-ALS analysis of 1 H-MRSI of the prostate can reliably identify tumor lesions and assess their aggressiveness. It handled multicenter data with minimal preprocessing and without using prior knowledge or quality control. These findings indicate that MCR-ALS can serve as an automated tool to assess the presence, extent, and aggressiveness of tumor lesions in the prostate, enhancing diagnostic capabilities and treatment planning of PCa patients.


Asunto(s)
Próstata , Neoplasias de la Próstata , Masculino , Humanos , Próstata/diagnóstico por imagen , Próstata/patología , Protones , Neoplasias de la Próstata/diagnóstico por imagen , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética/métodos , Análisis de los Mínimos Cuadrados
7.
Invest Radiol ; 59(7): 519-525, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38157433

RESUMEN

BACKGROUND: Accurate detection of lymph node (LN) metastases in prostate cancer (PCa) is a challenging but crucial step for disease staging. Ultrasmall superparamagnetic iron oxide (USPIO)-enhanced magnetic resonance imaging (MRI) enables distinction between healthy LNs and nodes suspicious for harboring metastases. When combined with MRI at an ultra-high magnetic field, an unprecedented spatial resolution can be exploited to visualize these LNs. PURPOSE: The aim of this study was to explore USPIO-enhanced MRI at 7 T in comparison to 3 T for the detection of small suspicious LNs in the same cohort of patients with PCa. MATERIALS AND METHODS: Twenty PCa patients with high-risk primary or recurrent disease were referred to our hospital for an investigational USPIO-enhanced 3 T MRI examination with ferumoxtran-10. With consent, they underwent a 7 T MRI on the same day. Three-dimensional anatomical and T2*-weighted images of both examinations were evaluated blinded, with an interval, by 2 readers who annotated LNs suspicious for metastases. Number, size, and level of suspicion (LoS) of LNs were paired within patients and compared between field strengths. RESULTS: At 7 T, both readers annotated significantly more LNs compared with 3 T (474 and 284 vs 344 and 162), with 116 suspicious LNs on 7 T (range, 1-34 per patient) and 79 suspicious LNs on 3 T (range, 1-14 per patient) in 17 patients. For suspicious LNs, the median short axis diameter was 2.6 mm on 7 T (1.3-9.5 mm) and 2.8 mm for 3 T (1.7-10.4 mm, P = 0.05), with large overlap in short axis of annotated LNs between LoS groups. At 7 T, significantly more suspicious LNs had a short axis <2.5 mm compared with 3 T (44% vs 27%). Magnetic resonance imaging at 7 T provided better image quality and structure delineation and a higher LoS score for suspicious nodes. CONCLUSIONS: In the same cohort of patients with PCa, more and more small LNs were detected on 7 T USPIO-enhanced MRI compared with 3 T MRI. Suspicious LNs are generally very small, and increased nodal size was not a good indication of suspicion for the presence of metastases. The high spatial resolution of USPIO-enhanced MRI at 7 T improves structure delineation and the visibility of very small suspicious LNs, potentially expanding the in vivo detection limits of pelvic LN metastases in PCa patients.


Asunto(s)
Medios de Contraste , Metástasis Linfática , Imagen por Resonancia Magnética , Nanopartículas de Magnetita , Neoplasias de la Próstata , Humanos , Masculino , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/patología , Imagen por Resonancia Magnética/métodos , Anciano , Metástasis Linfática/diagnóstico por imagen , Persona de Mediana Edad , Dextranos , Ganglios Linfáticos/diagnóstico por imagen , Ganglios Linfáticos/patología , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Óxido Ferrosoférrico , Nanopartículas Magnéticas de Óxido de Hierro
8.
Invest Radiol ; 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-37975702

RESUMEN

OBJECTIVES: Two advanced imaging modalities used to detect lymph node (LN) metastases in prostate cancer patients are prostate-specific membrane antigen (PSMA) positron emission tomography/computed tomography and ultrasmall superparamagnetic iron oxide (USPIO)-enhanced magnetic resonance imaging (MRI). As these modalities use different targets, a subnodal comparison is needed to interpret both their correspondence and their differences. The aim of this explorative study was to compare ex vivo 111In-PSMA µSPECT images with high-resolution 7 T USPIO µMR images and histopathology of resected LN specimens from prostate cancer patients to assess the degree of correspondence at subnodal level. MATERIALS AND METHODS: Twenty primary prostate cancer patients who underwent pelvic LN dissection were included and received USPIO contrast and 111In-PSMA. A total of 41 LNs of interest (LNOIs) were selected for ex vivo imaging based on γ-probe detection or palpation. µSPECT and µMRI acquisition were performed immediately after resection. Overlay of µSPECT images on MR images was performed, and the level of correspondence (LoC) between µSPECT and µMR findings was assessed according to a 4-point Likert classification scheme. RESULTS: Forty-one LNOIs could be matched to an LN on ex vivo µMRI. Coregistration of µSPECT and USPIO-enhanced water-selective multigradient echo MR images was successful for all 41 LNOIs. Ninety percent of the lesions showed excellent correspondence regarding the presence of metastatic tissue and affected subnodal site (LoC 4; 37/41). In only 1 of 41 LNOIs, a small metastasis was misclassified by both techniques. Three LNOIs were classified as LoC 3 (7%) and 1 LNOI as LoC 2. All LoC 2 and LoC 3 lesions had PSMA-expressing metastases on final histopathology. CONCLUSIONS: Coregistration of µSPECT and USPIO-µMRI showed excellent subnodal correspondence in the majority (90%) of LNs. Ex vivo imaging may thus help localize small cancer deposits within resected LNs and could contribute to improved interpretation of in vivo imaging of LNs.

9.
Cancers (Basel) ; 15(20)2023 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-37894355

RESUMEN

Distinguishing treatment-related abnormalities (TRA) from tumor progression (TP) in glioblastoma patients is a diagnostic imaging challenge due to the identical morphology of conventional MR imaging sequences. Diffusion-weighted imaging (DWI) and its derived images of the apparent diffusion coefficient (ADC) have been suggested as diagnostic tools for this problem. The aim of this study is to determine the diagnostic accuracy of different cut-off values of the ADC to differentiate between TP and TRA. In total, 76 post-treatment glioblastoma patients with new contrast-enhancing lesions were selected. Lesions were segmented using a T1-weighted, contrast-enhanced scan. The mean ADC values of the segmentations were compared between TRA and TP groups. Diagnostic accuracy was compared by use of the area under the curve (AUC) and the derived sensitivity and specificity values from cutoff points. Although ADC values in TP (mean = 1.32 × 10-3 mm2/s; SD = 0.31 × 10-3 mm2/s) were significantly different compared to TRA (mean = 1.53 × 10-3 mm2/s; SD = 0.28 × 10-3 mm2/s) (p = 0.003), considerable overlap in their distributions exists. The AUC of ADC values to distinguish TP from TRA was 0.71, with a sensitivity and specificity of 65% and 70%, respectively, at an ADC value of 1.47 × 10-3 mm2/s. These findings therefore indicate that ADC maps should not be used in discerning between TP and TRA at a certain timepoint without information on temporal evolution.

10.
Ann Surg Oncol ; 30(13): 8735-8742, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37661223

RESUMEN

OBJECTIVE: This study investigates the performance of the DiffMag handheld probe (nonlinear magnetometry), to be used for sentinel lymph node detection. Furthermore, the performance of DiffMag is compared with a gamma probe and a first-order magnetometer (Sentimag®, linear magnetometry). METHODS: The performance of all three probes was evaluated based on longitudinal distance, transverse distance, and resolving power for two tracer volumes. A phantom was developed to investigate the performance of the probes for a clinically relevant situation in the floor of the mouth (FOM). RESULTS: Considering the longitudinal distance, both DiffMag handheld and Sentimag® probe had comparable performance, while the gamma probe was able to detect at least a factor of 10 deeper. Transverse distances of 13, 11, and 51 mm were measured for the small tracer volume by the DiffMag handheld, Sentimag®, and the gamma probe, respectively. For the large tracer volume this was 21, 18, and 55 mm, respectively. The full width at half maximum, at 7 mm probe height from the phantom surface, was 14, 12, and 18 mm for the small tracer volume and 15, 18, and 25 mm for the large tracer volume with the DiffMag handheld, Sentimag®, and gamma probe, respectively. CONCLUSIONS: With a high resolving power but limited longitudinal distance, the DiffMag handheld probe seems suitable for detecting SLNs which are in close proximity to the primary tumor. In this study, comparable results were shown using linear magnetometry. The gamma probe reached 10 times deeper, but has a lower resolving power compared with the DiffMag handheld probe.


Asunto(s)
Nanopartículas de Magnetita , Ganglio Linfático Centinela , Humanos , Ganglio Linfático Centinela/patología , Biopsia del Ganglio Linfático Centinela/métodos , Magnetometría , Fenómenos Magnéticos , Ganglios Linfáticos/patología
11.
Front Physiol ; 14: 1198578, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37465695

RESUMEN

Chronic intake of high amounts of fructose has been linked to the development of metabolic disorders, which has been attributed to the almost complete clearance of fructose by the liver. However, direct measurement of hepatic fructose uptake is complicated by the fact that the portal vein is difficult to access. Here we present a new, non-invasive method to measure hepatic fructose uptake and metabolism with the use of deuterium metabolic imaging (DMI) upon administration of [6,6'-2H2]fructose. Using both [6,6'-2H2]glucose and [6,6'-2H2]fructose, we determined differences in the uptake and metabolism of glucose and fructose in the mouse liver with dynamic DMI. The deuterated compounds were administered either by fast intravenous (IV) bolus injection or by slow IV infusion. Directly after IV bolus injection of [6,6'-2H2]fructose, a more than two-fold higher initial uptake and subsequent 2.5-fold faster decay of fructose was observed in the mouse liver as compared to that of glucose after bolus injection of [6,6'-2H2]glucose. In contrast, after slow IV infusion of fructose, the 2H fructose/glucose signal maximum in liver spectra was lower compared to the 2H glucose signal maximum after slow infusion of glucose. With both bolus injection and slow infusion protocols, deuterium labeling of water was faster with fructose than with glucose. These observations are in line with a higher extraction and faster turnover of fructose in the liver, as compared with glucose. DMI with [6,6'-2H2]glucose and [6,6'-2H2]fructose could potentially contribute to a better understanding of healthy human liver metabolism and aberrations in metabolic diseases.

12.
MAGMA ; 36(2): 211-225, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37036574

RESUMEN

OBJECTIVE: We outline our vision for a 14 Tesla MR system. This comprises a novel whole-body magnet design utilizing high temperature superconductor; a console and associated electronic equipment; an optimized radiofrequency coil setup for proton measurement in the brain, which also has a local shim capability; and a high-performance gradient set. RESEARCH FIELDS: The 14 Tesla system can be considered a 'mesocope': a device capable of measuring on biologically relevant scales. In neuroscience the increased spatial resolution will anatomically resolve all layers of the cortex, cerebellum, subcortical structures, and inner nuclei. Spectroscopic imaging will simultaneously measure excitatory and inhibitory activity, characterizing the excitation/inhibition balance of neural circuits. In medical research (including brain disorders) we will visualize fine-grained patterns of structural abnormalities and relate these changes to functional and molecular changes. The significantly increased spectral resolution will make it possible to detect (dynamic changes in) individual metabolites associated with pathological pathways including molecular interactions and dynamic disease processes. CONCLUSIONS: The 14 Tesla system will offer new perspectives in neuroscience and fundamental research. We anticipate that this initiative will usher in a new era of ultra-high-field MR.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Cabeza , Imagen de Difusión por Resonancia Magnética , Ondas de Radio
13.
Life (Basel) ; 13(2)2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36836640

RESUMEN

In in vivo 1H-MRSI of the prostate, small matrix sizes can cause voxel bleeding extending to regions far from a voxel, dispersing a signal of interest outside that voxel and mixing extra-prostatic residual lipid signals into the prostate. To resolve this problem, we developed a three-dimensional overdiscretized reconstruction method. Without increasing the acquisition time from current 3D MRSI acquisition methods, this method is aimed to improve the localization of metabolite signals in the prostate without compromising on SNR. The proposed method consists of a 3D spatial overdiscretization of the MRSI grid, followed by noise decorrelation with small random spectral shifts and weighted spatial averaging to reach a final target spatial resolution. We successfully applied the three-dimensional overdiscretized reconstruction method to 3D prostate 1H-MRSI data at 3T. Both in phantom and in vivo, the method proved to be superior to conventional weighted sampling with Hamming filtering of k-space. Compared with the latter, the overdiscretized reconstructed data with smaller voxel size showed up to 10% less voxel bleed while maintaining higher SNR by a factor of 1.87 and 1.45 in phantom measurements. For in vivo measurements, within the same acquisition time and without loss of SNR compared with weighted k-space sampling and Hamming filtering, we achieved increased spatial resolution and improved localization in metabolite maps.

14.
Magn Reson Med ; 89(5): 1931-1944, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36594436

RESUMEN

PURPOSE: To increase the effectiveness of respiratory gating in radial stack-of-stars MRI, particularly when imaging at high spatial resolutions or with multiple echoes. METHODS: Free induction decay (FID) navigators were integrated into a three-dimensional gradient echo radial stack-of-stars pulse sequence. These navigators provided a motion signal with a high temporal resolution, which allowed single-spoke binning (SSB): each spoke at each phase encode step was sorted individually to the corresponding motion state of the respiratory signal. SSB was compared with spoke-angle binning (SAB), in which all phase encode steps of one projection angle were sorted without the use of additional navigator data. To illustrate the benefit of SSB over SAB, images of a motion phantom and of six free-breathing volunteers were reconstructed after motion-gating using either method. Image sharpness was quantitatively compared using image gradient entropies. RESULTS: The proposed method resulted in sharper images of the motion phantom and free-breathing volunteers. Differences in gradient entropy were statistically significant (p = 0.03) in favor of SSB. The increased accuracy of motion-gating led to a decrease of streaking artifacts in motion-gated four-dimensional reconstructions. To consistently estimate respiratory signals from the FID-navigator data, specific types of gradient spoiler waveforms were required. CONCLUSION: SSB allowed high-resolution motion-corrected MR imaging, even when acquiring multiple gradient echo signals or large acquisition matrices, without sacrificing accuracy of motion-gating. SSB thus relieves restrictions on the choice of pulse sequence parameters, enabling the use of motion-gated radial stack-of-stars MRI in a broader domain of clinical applications.


Asunto(s)
Artefactos , Interpretación de Imagen Asistida por Computador , Humanos , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética/métodos , Abdomen/diagnóstico por imagen , Movimiento (Física) , Respiración , Imagenología Tridimensional/métodos
15.
Magn Reson Med ; 89(5): 1741-1753, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36572967

RESUMEN

PURPOSE: To develop a robust processing procedure of raw signals from water-unsuppressed MRSI of the prostate for the mapping of absolute tissue concentrations of metabolites. METHODS: Water-unsuppressed 3D MRSI data were acquired from a phantom, from healthy volunteers, and a patient with prostate cancer. Signal processing included sequential computation of the modulus of the FID to remove water sidebands, a Hilbert transformation, and k-space Hamming filtering. For the removal of the water signal, we compared Löwner tensor-based blind source separation (BSS) and Hankel Lanczos singular value decomposition techniques. Absolute metabolite levels were quantified with LCModel and the results were statistically analyzed to compare the water removal methods and conventional water-suppressed MRSI. RESULTS: The post-processing algorithms successfully removed the water signal and its sidebands without affecting metabolite signals. The best water removal performance was achieved by Löwner tensor-based BSS. Absolute tissue concentrations of citrate in the peripheral zone derived from water-suppressed and unsuppressed 1 H MRSI were the same and as expected from the known physiology of the healthy prostate. Maps for citrate and choline from water-unsuppressed 3D 1 H-MRSI of the prostate showed expected spatial variations in metabolite levels. CONCLUSION: We developed a robust relatively simple post-processing method of water-unsuppressed MRSI of the prostate to remove the water signal. Absolute quantification using the water signal, originating from the same location as the metabolite signals, avoids the acquisition of additional reference data.


Asunto(s)
Próstata , Agua , Masculino , Humanos , Próstata/diagnóstico por imagen , Agua/química , Espectroscopía de Resonancia Magnética/métodos , Imagen por Resonancia Magnética/métodos , Citratos/metabolismo , Ácido Cítrico/metabolismo , Algoritmos , Encéfalo/metabolismo
16.
Insights Imaging ; 13(1): 158, 2022 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-36194373

RESUMEN

BACKGROUND: In a considerable subgroup of glioma patients treated with (chemo) radiation new lesions develop either representing tumor progression (TP) or treatment-related abnormalities (TRA). Quantitative diffusion imaging metrics such as the Apparent Diffusion Coefficient (ADC) and Fractional Anisotropy (FA) have been reported as potential metrics to noninvasively differentiate between these two phenomena. Variability in performance scores of these metrics and absence of a critical overview of the literature contribute to the lack of clinical implementation. This meta-analysis therefore critically reviewed the literature and meta-analyzed the performance scores. METHODS: Systematic searching was carried out in PubMed, EMBASE and The Cochrane Library. Using predefined criteria, papers were reviewed. Diagnostic accuracy values of suitable papers were meta-analyzed quantitatively. RESULTS: Of 1252 identified papers, 10 ADC papers, totaling 414 patients, and 4 FA papers, with 154 patients were eligible for meta-analysis. Mean ADC values of the patients in the TP/TRA groups were 1.13 × 10-3mm2/s (95% CI 0.912 × 10-3-1.32 × 10-3mm2/s) and 1.38 × 10-3mm2/s (95% CI 1.33 × 10-3-1.45 × 10-3mm2/s, respectively. Mean FA values of TP/TRA was 0.19 (95% CI 0.189-0.194) and 0.14 (95% CI 0.137-0.143) respectively. A significant mean difference between ADC and FA values in TP versus TRA was observed (p = 0.005). CONCLUSIONS: Quantitative ADC and FA values could be useful for distinguishing TP from TRA on a meta-level. Further studies using serial imaging of individual patients are warranted to determine the role of diffusion imaging in glioma patients.

17.
Invest Radiol ; 57(12): 810-818, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-35776432

RESUMEN

OBJECTIVES: Ultrasmall superparamagnetic iron oxide (USPIO)-enhanced magnetic resonance imaging (MRI) is a potential diagnostic tool for lymph node assessment in patients with head and neck cancer. Validation by radiologic-pathologic correlation is essential before the method is evaluated in clinical studies. In this study, MRI signal intensity patterns of lymph nodes are correlated to their histopathology to develop a new USPIO-enhanced MRI reading algorithm that can be used for nodal assessment in head and neck cancer patients. MATERIALS AND METHODS: Ten head and neck cancer patients underwent in vivo USPIO-enhanced MRI before neck dissection. An ex vivo MRI of the neck dissection specimen was performed for precise coregistration of in vivo MRI with histopathology. Normal clinical histopathological workup was extended with meticulous matching of all lymph nodes regarded as potentially metastatic based on their in vivo MRI signal intensity pattern. On the basis of histopathology of resected nodes, in vivo MRI signal characteristics were defined separating benign from malignant lymph nodes. RESULTS: Fifteen of 34 node-to-node correlated lymph nodes with remaining signal intensity on T2*-weighted MRI were histopathologically metastatic and 19 were benign. Radiological analysis revealed that metastatic lymph nodes showed equal or higher MRI signal intensity when compared with lipid tissue on T2*-weighted MGRE sequence (15/16 lymph nodes; 94%), whereas healthy lymph nodes showed lower (17/19 lymph nodes; 89%) or complete attenuation of signal intensity (273/279; 98%) when compared with lipid tissue on T2*-weighted MGRE. Histopathology of all resected specimens identified 392 lymph nodes. Six lymph nodes with (micro)metastases were missed with in vivo MRI. Whether these 6 lymph nodes were correlated to a nonmalignant lymph node on in vivo MRI or could not be detected at all is unclear. CONCLUSIONS: We developed a new reading algorithm to differentiate benign from malignant lymph nodes in head and neck cancer patients on the basis of their appearance on high-resolution T2*-weighted USPIO-enhanced MRI. Next steps involve validation of our reading algorithm to further improve the accuracy of neck lymph node staging with USPIO-enhanced MRI in prospective clinical studies with larger number of patients.


Asunto(s)
Neoplasias de Cabeza y Cuello , Nanopartículas de Magnetita , Humanos , Medios de Contraste , Óxido Ferrosoférrico , Metástasis Linfática/diagnóstico por imagen , Lectura , Estudios Prospectivos , Dextranos , Imagen por Resonancia Magnética/métodos , Ganglios Linfáticos/diagnóstico por imagen , Ganglios Linfáticos/patología , Neoplasias de Cabeza y Cuello/diagnóstico por imagen , Neoplasias de Cabeza y Cuello/patología , Algoritmos , Lípidos , Estadificación de Neoplasias
18.
MAGMA ; 35(4): 631-644, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35579785

RESUMEN

Multiparametric MRI of the prostate at clinical magnetic field strengths (1.5/3 Tesla) has emerged as a reliable noninvasive imaging modality for identifying clinically significant cancer, enabling selective sampling of high-risk regions with MRI-targeted biopsies, and enabling minimally invasive focal treatment options. With increased sensitivity and spectral resolution, ultra-high-field (UHF) MRI (≥ 7 Tesla) holds the promise of imaging and spectroscopy of the prostate with unprecedented detail. However, exploiting the advantages of ultra-high magnetic field is challenging due to inhomogeneity of the radiofrequency field and high local specific absorption rates, raising local heating in the body as a safety concern. In this work, we review various coil designs and acquisition strategies to overcome these challenges and demonstrate the potential of UHF MRI in anatomical, functional and metabolic imaging of the prostate and pelvic lymph nodes. When difficulties with power deposition of many refocusing pulses are overcome and the full potential of metabolic spectroscopic imaging is used, UHF MR(S)I may aid in a better understanding of the development and progression of local prostate cancer. Together with large field-of-view and low-flip-angle anatomical 3D imaging, 7 T MRI can be used in its full strength to characterize different tumor stages and help explain the onset and spatial distribution of metastatic spread.


Asunto(s)
Imagen por Resonancia Magnética , Neoplasias de la Próstata , Estudios de Factibilidad , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Próstata/metabolismo , Neoplasias de la Próstata/metabolismo , Ondas de Radio
19.
MAGMA ; 35(4): 645-665, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35445307

RESUMEN

In this paper, we review the developments of 1H-MR spectroscopic imaging (MRSI) methods designed to investigate prostate cancer, covering key aspects such as specific hardware, dedicated pulse sequences for data acquisition and data processing and quantification techniques. Emphasis is given to recent advancements in MRSI methodologies, as well as future developments, which can lead to overcome difficulties associated with commonly employed MRSI approaches applied in clinical routine. This includes the replacement of standard PRESS sequences for volume selection, which we identified as inadequate for clinical applications, by sLASER sequences and implementation of 1H MRSI without water signal suppression. These may enable a new evaluation of the complementary role and significance of MRSI in prostate cancer management.


Asunto(s)
Neoplasias de la Próstata , Protones , Humanos , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética/métodos , Masculino , Neoplasias de la Próstata/diagnóstico por imagen , Espectroscopía de Protones por Resonancia Magnética/métodos
20.
Methods Protoc ; 5(2)2022 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-35314661

RESUMEN

BACKGROUND: In various cancer types, the first step towards extended metastatic disease is the presence of lymph node metastases. Imaging methods with sufficient diagnostic accuracy are required to personalize treatment. Lymph node metastases can be detected with ultrasmall superparamagnetic iron oxide (USPIO)-enhanced magnetic resonance imaging (MRI), but this method needs validation. Here, a workflow is presented, which is designed to compare MRI-visible lymph nodes on a node-to-node basis with histopathology. METHODS: In patients with prostate, rectal, periampullary, esophageal, and head-and-neck cancer, in vivo USPIO-enhanced MRI was performed to detect lymph nodes suspicious of harboring metastases. After lymphadenectomy, but before histopathological assessment, a 7 Tesla preclinical ex vivo MRI of the surgical specimen was performed, and in vivo MR images were radiologically matched to ex vivo MR images. Lymph nodes were annotated on the ex vivo MRI for an MR-guided pathological examination of the specimens. RESULTS: Matching lymph nodes of ex vivo MRI to pathology was feasible in all cancer types. The annotated ex vivo MR images enabled a comparison between USPIO-enhanced in vivo MRI and histopathology, which allowed for analyses on a nodal, or at least on a nodal station, basis. CONCLUSIONS: A workflow was developed to validate in vivo USPIO-enhanced MRI with histopathology. Guiding the pathologist towards lymph nodes in the resection specimens during histopathological work-up allowed for the analysis at a nodal basis, or at least nodal station basis, of in vivo suspicious lymph nodes with corresponding histopathology, providing direct information for validation of in vivo USPIO-enhanced, MRI-detected lymph nodes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...