Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38717592

RESUMEN

PURPOSE: [18F]PI-2620 positron emission tomography (PET) detects misfolded tau in progressive supranuclear palsy (PSP) and Alzheimer's disease (AD). We questioned the feasibility and value of absolute [18F]PI-2620 PET quantification for assessing tau by regional distribution volumes (VT). Here, arterial input functions (AIF) represent the gold standard, but cannot be applied in routine clinical practice, whereas image-derived input functions (IDIF) represent a non-invasive alternative. We aimed to validate IDIF against AIF and we evaluated the potential to discriminate patients with PSP and AD from healthy controls by non-invasive quantification of [18F] PET. METHODS: In the first part of the study, we validated AIF derived from radial artery whole blood against IDIF by investigating 20 subjects (ten controls and ten patients). IDIF were generated by manual extraction of the carotid artery using the average and the five highest (max5) voxel intensity values and by automated extraction of the carotid artery using the average and the maximum voxel intensity value. In the second part of the study, IDIF quantification using the IDIF with the closest match to the AIF was transferred to group comparison of a large independent cohort of 40 subjects (15 healthy controls, 15 PSP patients and 10 AD patients). We compared VT and VT ratios, both calculated by Logan plots, with distribution volume (DV) ratios using simplified reference tissue modelling and standardized uptake value (SUV) ratios. RESULTS: AIF and IDIF showed highly correlated input curves for all applied IDIF extraction methods (0.78 < r < 0.83, all p < 0.0001; area under the curves (AUC): 0.73 < r ≤ 0.82, all p ≤ 0.0003). Regarding the VT values, correlations were mainly found between those generated by the AIF and by the IDIF methods using the maximum voxel intensity values. Lowest relative differences (RD) were observed by applying the manual method using the five highest voxel intensity values (max5) (AIF vs. IDIF manual, avg: RD = -82%; AIF vs. IDIF automated, avg: RD = -86%; AIF vs. IDIF manual, max5: RD = -6%; AIF vs. IDIF automated, max: RD = -26%). Regional VT values revealed considerable variance at group level, which was strongly reduced upon scaling by the inferior cerebellum. The resulting VT ratio values were adequate to detect group differences between patients with PSP or AD and healthy controls (HC) (PSP target region (globus pallidus): HC vs. PSP vs. AD: 1.18 vs. 1.32 vs. 1.16; AD target region (Braak region I): HC vs. PSP vs. AD: 1.00 vs. 1.00 vs. 1.22). VT ratios and DV ratios outperformed SUV ratios and VT in detecting differences between PSP and healthy controls, whereas all quantification approaches performed similarly in comparing AD and healthy controls. CONCLUSION: Blood-free IDIF is a promising approach for quantification of [18F]PI-2620 PET, serving as correlating surrogate for invasive continuous arterial blood sampling. Regional [18F]PI-2620 VT show large variance, in contrast to regional [18F]PI-2620 VT ratios scaled with the inferior cerebellum, which are appropriate for discriminating PSP, AD and healthy controls. DV ratios obtained by simplified reference tissue modeling are similarly suitable for this purpose.

2.
Eur J Nucl Med Mol Imaging ; 51(7): 1909-1922, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38366196

RESUMEN

PURPOSE: We hypothesized that severe tau burden in brain regions involved in direct or indirect pathways of the basal ganglia correlate with more severe striatal dopamine deficiency in four-repeat (4R) tauopathies. Therefore, we correlated [18F]PI-2620 tau-positron-emission-tomography (PET) imaging with [123I]-Ioflupane single-photon-emission-computed tomography (SPECT) for dopamine transporter (DaT) availability. METHODS: Thirty-eight patients with clinically diagnosed 4R-tauopathies (21 male; 69.0 ± 8.5 years) and 15 patients with clinically diagnosed α-synucleinopathies (8 male; 66.1 ± 10.3 years) who underwent [18F]PI-2620 tau-PET and DaT-SPECT imaging with a time gap of 3 ± 5 months were evaluated. Regional Tau-PET signals and DaT availability as well as their principal components were correlated in patients with 4R-tauopathies and α-synucleinopathies. Both biomarkers and the residuals of their association were correlated with clinical severity scores in 4R-tauopathies. RESULTS: In patients with 4R-tauopathies, [18F]PI-2620 binding in basal ganglia and midbrain regions was negatively associated with striatal DaT availability (i.e. globus pallidus internus and putamen (ß = - 0.464, p = 0.006, Durbin-Watson statistics = 1.824) in a multiple regression model. Contrarily, [18F]PI-2620 binding in the dentate nucleus showed no significant regression factor with DaT availability in the striatum (ß = 0.078, p = 0.662, Durbin-Watson statistics = 1.686). Patients with α-synucleinopathies did not indicate any regional associations between [18F]PI-2620-binding and DaT availability. Higher DaT-SPECT binding relative to tau burden was associated with better clinical performance (ß = - 0.522, p = 0.011, Durbin-Watson statistics = 2.663) in patients with 4R-tauopathies. CONCLUSION: Tau burden in brain regions involved in dopaminergic pathways is associated with aggravated dopaminergic dysfunction in patients with clinically diagnosed primary tauopathies. The ability to sustain dopamine transmission despite tau accumulation may preserve motor function.


Asunto(s)
Proteínas de Transporte de Dopamina a través de la Membrana Plasmática , Dopamina , Tomografía de Emisión de Positrones , Tauopatías , Proteínas tau , Humanos , Masculino , Femenino , Anciano , Tauopatías/diagnóstico por imagen , Tauopatías/metabolismo , Dopamina/metabolismo , Proteínas tau/metabolismo , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Tomografía Computarizada de Emisión de Fotón Único , Persona de Mediana Edad , Nortropanos/farmacocinética
3.
Neuroimage Clin ; 38: 103402, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37087820

RESUMEN

In recent years in vivo visualization of tau deposits has become possible with various PET radiotracers. The tau tracer [18F]PI-2620 proved high affinity both to 3-repeat/4-repeat tau in Alzheimer's disease as well as to 4-repeat tau in progressive supranuclear palsy (PSP) and corticobasal syndrome (CBS). However, to be clinically relevant, biomarkers should not only correlate with pathological changes but also with disease stage and progression. Therefore, we aimed to investigate the correlation between topology of [18F]PI-2620 uptake and symptomatology in 4-repeat tauopathies. 72 patients with possible or probable 4-repeat tauopathy, i.e. 31 patients with PSP-Richardson's syndrome (PSP-RS), 30 with amyloid-negative CBS and 11 with PSP-non-RS/CBS, underwent [18F]PI-2620-PET. Principal component analysis was performed to identify groups of similar brain regions based on 20-40 min p.i. regional standardized uptake value ratio z-scores. Correlations between component scores and the items of the PSP Rating Scale were explored. Motor signs like gait, arising from chair and postural instability showed a positive correlation with tracer uptake in mesial frontoparietal lobes and the medial superior frontal gyrus and adjacent anterior cingulate cortex. While the signs disorientation and bradyphrenia showed a positive correlation with tracer uptake in the parietooccipital junction, the signs disorientation and arising from chair were negatively correlated with tau-PET signal in the caudate nucleus and thalamus. Total PSP Rating Scale Score showed a trend towards a positive correlation with mesial frontoparietal lobes and a negative correlation with caudate nucleus and thalamus. While in CBS patients, the main finding was a negative correlation of tracer binding in the caudate nucleus and thalamus and a positive correlation of tracer binding in medial frontal cortex with gait and motor signs, in PSP-RS patients various correlations of clinical signs with tracer binding in specific cerebral regions could be detected. Our data reveal [18F]PI-2620 tau-PET topology to correlate with symptomatology in 4-repeat tauopathies. Longitudinal studies will be needed to address whether a deterioration of signs and symptoms over time can be monitored by [18F]PI-2620 in 4-repeat tauopathies and whether [18F]PI-2620 may serve as a marker of disease progression in future therapeutic trials. The detected negative correlation of tracer binding in the caudate nucleus and thalamus with the signs disorientation and arising from chair may be due to an increasing atrophy in these regions leading to partial volume effects and a relative decrease of tracer uptake in the disease course. As cerebral regions correlating with symptomatology differ depending on the clinical phenotype, a precise knowledge of clinical signs and symptoms is necessary when interpreting [18F]PI-2620 PET results.


Asunto(s)
Trastornos del Movimiento , Parálisis Supranuclear Progresiva , Humanos , Parálisis Supranuclear Progresiva/diagnóstico , Piridinas , Confusión , Proteínas tau/metabolismo , Tomografía de Emisión de Positrones/métodos
4.
J Neuroinflammation ; 20(1): 68, 2023 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-36906584

RESUMEN

OBJECTIVES: Reactive gliosis is a common pathological hallmark of CNS pathology resulting from neurodegeneration and neuroinflammation. In this study we investigate the capability of a novel monoamine oxidase B (MAO-B) PET ligand to monitor reactive astrogliosis in a transgenic mouse model of Alzheimer`s disease (AD). Furthermore, we performed a pilot study in patients with a range of neurodegenerative and neuroinflammatory conditions. METHODS: A cross-sectional cohort of 24 transgenic (PS2APP) and 25 wild-type mice (age range: 4.3-21.0 months) underwent 60 min dynamic [18F]fluorodeprenyl-D2 ([18F]F-DED), static 18 kDa translocator protein (TSPO, [18F]GE-180) and ß-amyloid ([18F]florbetaben) PET imaging. Quantification was performed via image derived input function (IDIF, cardiac input), simplified non-invasive reference tissue modelling (SRTM2, DVR) and late-phase standardized uptake value ratios (SUVr). Immunohistochemical (IHC) analyses of glial fibrillary acidic protein (GFAP) and MAO-B were performed to validate PET imaging by gold standard assessments. Patients belonging to the Alzheimer's disease continuum (AD, n = 2), Parkinson's disease (PD, n = 2), multiple system atrophy (MSA, n = 2), autoimmune encephalitis (n = 1), oligodendroglioma (n = 1) and one healthy control underwent 60 min dynamic [18F]F-DED PET and the data were analyzed using equivalent quantification strategies. RESULTS: We selected the cerebellum as a pseudo-reference region based on the immunohistochemical comparison of age-matched PS2APP and WT mice. Subsequent PET imaging revealed that PS2APP mice showed elevated hippocampal and thalamic [18F]F-DED DVR when compared to age-matched WT mice at 5 months (thalamus: + 4.3%; p = 0.048), 13 months (hippocampus: + 7.6%, p = 0.022) and 19 months (hippocampus: + 12.3%, p < 0.0001; thalamus: + 15.2%, p < 0.0001). Specific [18F]F-DED DVR increases of PS2APP mice occurred earlier when compared to signal alterations in TSPO and ß-amyloid PET and [18F]F-DED DVR correlated with quantitative immunohistochemistry (hippocampus: R = 0.720, p < 0.001; thalamus: R = 0.727, p = 0.002). Preliminary experience in patients showed [18F]F-DED VT and SUVr patterns, matching the expected topology of reactive astrogliosis in neurodegenerative (MSA) and neuroinflammatory conditions, whereas the patient with oligodendroglioma and the healthy control indicated [18F]F-DED binding following the known physiological MAO-B expression in brain. CONCLUSIONS: [18F]F-DED PET imaging is a promising approach to assess reactive astrogliosis in AD mouse models and patients with neurological diseases.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Oligodendroglioma , Animales , Humanos , Ratones , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Estudios Transversales , Gliosis/patología , Inflamación/metabolismo , Ratones Transgénicos , Monoaminooxidasa/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Oligodendroglioma/metabolismo , Oligodendroglioma/patología , Proyectos Piloto , Tomografía de Emisión de Positrones/métodos , Receptores de GABA/metabolismo
5.
J Neuroinflammation ; 20(1): 47, 2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36829182

RESUMEN

AIM: We aimed to investigate the impact of microglial activity and microglial FDG uptake on metabolic connectivity, since microglial activation states determine FDG-PET alterations. Metabolic connectivity refers to a concept of interacting metabolic brain regions and receives growing interest in approaching complex cerebral metabolic networks in neurodegenerative diseases. However, underlying sources of metabolic connectivity remain to be elucidated. MATERIALS AND METHODS: We analyzed metabolic networks measured by interregional correlation coefficients (ICCs) of FDG-PET scans in WT mice and in mice with mutations in progranulin (Grn) or triggering receptor expressed on myeloid cells 2 (Trem2) knockouts (-/-) as well as in double mutant Grn-/-/Trem2-/- mice. We selected those rodent models as they represent opposite microglial signatures with disease associated microglia in Grn-/- mice and microglia locked in a homeostatic state in Trem2-/- mice; however, both resulting in lower glucose uptake of the brain. The direct influence of microglia on metabolic networks was further determined by microglia depletion using a CSF1R inhibitor in WT mice at two different ages. Within maps of global mean scaled regional FDG uptake, 24 pre-established volumes of interest were applied and assigned to either cortical or subcortical networks. ICCs of all region pairs were calculated and z-transformed prior to group comparisons. FDG uptake of neurons, microglia, and astrocytes was determined in Grn-/- and WT mice via assessment of single cell tracer uptake (scRadiotracing). RESULTS: Microglia depletion by CSF1R inhibition resulted in a strong decrease of metabolic connectivity defined by decrease of mean cortical ICCs in WT mice at both ages studied (6-7 m; p = 0.0148, 9-10 m; p = 0.0191), when compared to vehicle-treated age-matched WT mice. Grn-/-, Trem2-/- and Grn-/-/Trem2-/- mice all displayed reduced FDG-PET signals when compared to WT mice. However, when analyzing metabolic networks, a distinct increase of ICCs was observed in Grn-/- mice when compared to WT mice in cortical (p < 0.0001) and hippocampal (p < 0.0001) networks. In contrast, Trem2-/- mice did not show significant alterations in metabolic connectivity when compared to WT. Furthermore, the increased metabolic connectivity in Grn-/- mice was completely suppressed in Grn-/-/Trem2-/- mice. Grn-/- mice exhibited a severe loss of neuronal FDG uptake (- 61%, p < 0.0001) which shifted allocation of cellular brain FDG uptake to microglia (42% in Grn-/- vs. 22% in WT). CONCLUSIONS: Presence, absence, and activation of microglia have a strong impact on metabolic connectivity of the mouse brain. Enhanced metabolic connectivity is associated with increased microglial FDG allocation.


Asunto(s)
Fluorodesoxiglucosa F18 , Microglía , Animales , Ratones , Microglía/metabolismo , Fluorodesoxiglucosa F18/metabolismo , Progranulinas/metabolismo , Encéfalo/metabolismo , Tomografía de Emisión de Positrones , Glicoproteínas de Membrana/metabolismo , Receptores Inmunológicos/metabolismo
6.
Eur J Nucl Med Mol Imaging ; 50(2): 423-434, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36102964

RESUMEN

PURPOSE: Early after [18F]PI-2620 PET tracer administration, perfusion imaging has potential for regional assessment of neuronal injury in neurodegenerative diseases. This is while standard late-phase [18F]PI-2620 tau-PET is able to discriminate the 4-repeat tauopathies progressive supranuclear palsy and corticobasal syndrome (4RTs) from disease controls and healthy controls. Here, we investigated whether early-phase [18F]PI-2620 PET has an additive value for biomarker based evaluation of 4RTs. METHODS: Seventy-eight patients with 4RTs (71 ± 7 years, 39 female), 79 patients with other neurodegenerative diseases (67 ± 12 years, 35 female) and twelve age-matched controls (69 ± 8 years, 8 female) underwent dynamic (0-60 min) [18F]PI-2620 PET imaging. Regional perfusion (0.5-2.5 min p.i.) and tau load (20-40 min p.i.) were measured in 246 predefined brain regions [standardized-uptake-value ratios (SUVr), cerebellar reference]. Regional SUVr were compared between 4RTs and controls by an ANOVA including false-discovery-rate (FDR, p < 0.01) correction. Hypoperfusion in resulting 4RT target regions was evaluated at the patient level in all patients (mean value - 2SD threshold). Additionally, perfusion and tau pattern expression levels were explored regarding their potential discriminatory value of 4RTs against other neurodegenerative disorders, including validation in an independent external dataset (n = 37), and correlated with clinical severity in 4RTs (PSP rating scale, MoCA, activities of daily living). RESULTS: Patients with 4RTs had significant hypoperfusion in 21/246 brain regions, most dominant in thalamus, caudate nucleus, and anterior cingulate cortex, fitting to the topology of the 4RT disease spectrum. However, single region hypoperfusion was not specific regarding the discrimination of patients with 4RTs against patients with other neurodegenerative diseases. In contrast, perfusion pattern expression showed promise for discrimination of patients with 4RTs from other neurodegenerative diseases (AUC: 0.850). Discrimination by the combined perfusion-tau pattern expression (AUC: 0.903) exceeded that of the sole tau pattern expression (AUC: 0.864) and the discriminatory power of the combined perfusion-tau pattern expression was replicated in the external dataset (AUC: 0.917). Perfusion but not tau pattern expression was associated with PSP rating scale (R = 0.402; p = 0.0012) and activities of daily living (R = - 0.431; p = 0.0005). CONCLUSION: [18F]PI-2620 perfusion imaging mirrors known topology of regional hypoperfusion in 4RTs. Single region hypoperfusion is not specific for 4RTs, but perfusion pattern expression may provide an additive value for the discrimination of 4RTs from other neurodegenerative diseases and correlates closer with clinical severity than tau pattern expression.


Asunto(s)
Enfermedad de Alzheimer , Degeneración Corticobasal , Parálisis Supranuclear Progresiva , Anciano , Femenino , Humanos , Persona de Mediana Edad , Actividades Cotidianas , Enfermedad de Alzheimer/complicaciones , Degeneración Corticobasal/diagnóstico por imagen , Enfermedades Neurodegenerativas/diagnóstico por imagen , Tomografía de Emisión de Positrones , Parálisis Supranuclear Progresiva/diagnóstico por imagen
7.
Eur J Nucl Med Mol Imaging ; 50(5): 1384-1394, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36572740

RESUMEN

PURPOSE: Characteristic features of amyloid-PET (A), tau-PET (T), and FDG-PET (N) can serve for the A/T/N classification of neurodegenerative diseases. Recent studies showed that the early, perfusion-weighted phases of amyloid- or tau-PET recordings serve to detect cerebrometabolic deficits equally to FDG-PET, therefore providing a surrogate of neuronal injury. As such, two channels of diagnostic information can be obtained in the setting of a single PET scan. However, there has hitherto been no comparison of early-phase amyloid- and tau-PET as surrogates for deficits in perfusion/metabolism. Therefore, we undertook to compare [18F]flutemetamol-amyloid-PET and [18F]PI-2620 tau-PET as "one-stop shop" dual purpose tracers for the detection of neurodegenerative disease. METHODS: We obtained early-phase PET recordings with [18F]PI-2620 (0.5-2.5 min p.i.) and [18F]flutemetamol (0-10 min p.i.) in 64 patients with suspected neurodegenerative disease. We contrasted global mean normalized images (SUVr) in the patients with a normal cohort of 15 volunteers without evidence of increased pathology to ß-amyloid- and tau-PET examinations. Regional group differences of tracer uptake (z-scores) of 246 Brainnetome volumes of interest were calculated for both tracers, and the correlations of the z-scores were evaluated using Pearson's correlation coefficient. Lobar compartments, regions with significant neuronal injury (z-scores < - 3), and patients with different neurodegenerative disease entities (e.g., Alzheimer's disease or 4R-tauopathies) served for subgroup analysis. Additionally, we used partial regression to correlate regional perfusion alterations with clinical scores in cognition tests. RESULTS: The z-scores of perfusion-weighted images of both tracers showed high correlations across the brain, especially in the frontal and parietal lobes, which were the brain regions with pronounced perfusion deficit in the patient group (R = 0.83 ± 0.08; range, 0.61-0.95). Z-scores of individual patients correlated well by region (R = 0.57 ± 0.15; range, 0.16-0.90), notably when significant perfusion deficits were present (R = 0.66 ± 0.15; range, 0.28-0.90). CONCLUSION: The early perfusion phases of [18F]PI-2620 tau- and [18F]flutemetamol-amyloid-PET are roughly equivalent indices of perfusion defect indicative of regional and lobar neuronal injury in patients with various neurodegenerative diseases. As such, either tracer may serve for two diagnostic channels by assessment of amyloid/tau status and neuronal activity.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Humanos , Fluorodesoxiglucosa F18 , Enfermedad de Alzheimer/diagnóstico por imagen , Amiloide/metabolismo , Compuestos de Anilina , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Tomografía de Emisión de Positrones/métodos , Perfusión
8.
Front Mol Neurosci ; 15: 878236, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35493319

RESUMEN

Heterozygous pathogenic variants in the STIP1 homologous and U-box containing protein 1 (STUB1) gene have been identified as causes of autosomal dominant inherited spinocerebellar ataxia type 48 (SCA48). SCA48 is characterized by an ataxic movement disorder that is often, but not always, accompanied by a cognitive affective syndrome. We report a severe early onset dementia syndrome that mimics frontotemporal dementia and is caused by the intronic splice donor variant c.524+1G>A in STUB1. Impaired splicing was demonstrated by RNA analysis and in minigene assays of mutated and wild-type constructs of STUB1. The most striking consequence of this splicing impairment was retention of intron 3 in STUB1, which led to an in-frame insertion of 63 amino acids (aa) (p.Arg175_Glu176ins63) into the highly conserved coiled-coil domain of its encoded protein, C-terminus of HSP70-interacting protein (CHIP). To a lesser extent, activation of two cryptic splice sites in intron 3 was observed. The almost exclusively used one, c.524+86, was not predicted by in silico programs. Variant c.524+86 caused a frameshift (p.Arg175fs*93) that resulted in a truncated protein and presumably impairs the C-terminal U-box of CHIP, which normally functions as an E3 ubiquitin ligase. The cryptic splice site c.524+99 was rarely used and led to an in-frame insertion of 33 aa (p.Arg175_Glu176ins33) that resulted in disruption of the coiled-coil domain, as has been previously postulated for complete intron 3 retention. We additionally detected repeat expansions in the range of reduced penetrance in the TATA box-binding protein (TBP) gene by excluding other genes associated with dementia syndromes. The repeat expansion was heterozygous in one patient but compound heterozygous in the more severely affected patient. Therefore, we concluded that the observed severe dementia syndrome has a digenic background, making STUB1 and TBP important candidate genes responsible for early onset dementia syndromes.

9.
J Nucl Med ; 63(11): 1754-1760, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35422444

RESUMEN

Progressive supranuclear palsy (PSP) is a 4-repeat tauopathy movement disorder that can be imaged by the 18F-labeled tau PET tracer 2-(2-([18F]fluoro)pyridin-4-yl)-9H-pyrrolo[2,3-b:4,5-c']dipyridine (18F-PI-2620). The in vivo diagnosis is currently established on clinical grounds and supported by midbrain atrophy estimation in structural MRI. Here, we investigate whether 18F-PI-2620 tau PET has the potential to improve the imaging diagnosis of PSP. Methods: In this multicenter observational study, dynamic (0-60 min after injection) 18F-PI-2620 PET and structural MRI data for 36 patients with PSP, 22 with PSP-Richardson syndrome, and 14 with a clinical phenotype other than Richardson syndrome (i.e., variant PSP) were analyzed along with data for 10 age-matched healthy controls (HCs). The PET data underwent kinetic modeling, which resulted in distribution volume ratio (DVR) images. These and the MR images were visually assessed by 3 masked experts for typical PSP signs. Furthermore, established midbrain atrophy parameters were measured in structural MR images, and regional DVRs were measured in typical tau-in-PSP target regions in the PET data. Results: Visual assessments discriminated PSP patients and HCs with an accuracy of 63% for MRI and 80% for the combination of MRI and 18F-PI-2620 PET. As compared with patients of the PSP-Richardson syndrome subgroup, those of the variant PSP subgroup profited more in terms of sensitivity from the addition of the visual 18F-PI-2620 PET to the visual MRI information (35% vs. 22%). In quantitative image evaluation, midbrain-to-pons area ratio and globus pallidus DVRs discriminated best between the PSP patients and HCs, with sensitivities and specificities of 83% and 90%, respectively, for MRI and 94% and 100%, respectively, for the combination of MRI and 18F-PI-2620 PET. The gain of sensitivity by adding 18F-PI-2620 PET to MRI data was more marked in clinically less affected patients than in more affected patients (37% vs. 19% for visual, and 16% vs. 12% for quantitative image evaluation). Conclusion: These results provide evidence for an improved imaging-based PSP diagnosis by adding 18F-PI-2620 tau PET to structural MRI. This approach seems to be particularly promising at earlier disease stages and could be of value both for improving early clinical PSP diagnosis and for enriching PSP cohorts for trials of disease-modifying drugs.


Asunto(s)
Parálisis Supranuclear Progresiva , Humanos , Parálisis Supranuclear Progresiva/diagnóstico , Proteínas tau , Imagen por Resonancia Magnética/métodos , Atrofia
10.
Nat Commun ; 13(1): 1362, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35292638

RESUMEN

Tau pathology is the main driver of neuronal dysfunction in 4-repeat tauopathies, including cortico-basal degeneration and progressive supranuclear palsy. Tau is assumed to spread prion-like across connected neurons, but the mechanisms of tau propagation are largely elusive in 4-repeat tauopathies, characterized not only by neuronal but also by astroglial and oligodendroglial tau accumulation. Here, we assess whether connectivity is associated with 4R-tau deposition patterns by combining resting-state fMRI connectomics with both 2nd generation 18F-PI-2620 tau-PET in 46 patients with clinically diagnosed 4-repeat tauopathies and post-mortem cell-type-specific regional tau assessments from two independent progressive supranuclear palsy patient samples (n = 97 and n = 96). We find that inter-regional connectivity is associated with higher inter-regional correlation of both tau-PET and post-mortem tau levels in 4-repeat tauopathies. In regional cell-type specific post-mortem tau assessments, this association is stronger for neuronal than for astroglial or oligodendroglial tau, suggesting that connectivity is primarily associated with neuronal tau accumulation. Using tau-PET we find further that patient-level tau patterns are associated with the connectivity of subcortical tau epicenters. Together, the current study provides combined in vivo tau-PET and histopathological evidence that brain connectivity is associated with tau deposition patterns in 4-repeat tauopathies.


Asunto(s)
Parálisis Supranuclear Progresiva , Tauopatías , Encéfalo/metabolismo , Humanos , Imagen por Resonancia Magnética , Parálisis Supranuclear Progresiva/diagnóstico por imagen , Parálisis Supranuclear Progresiva/patología , Tauopatías/diagnóstico por imagen , Tauopatías/patología , Proteínas tau/metabolismo
11.
Front Neurol ; 12: 684523, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34276540

RESUMEN

Objectives: Autoradiography on brain tissue is used to validate binding targets of newly discovered radiotracers. The purpose of this study was to correlate quantification of autoradiography signal using the novel next-generation tau positron emission tomography (PET) radiotracer [18F]PI-2620 with immunohistochemically determined tau-protein load in both formalin-fixed paraffin-embedded (FFPE) and frozen tissue samples of patients with Alzheimer's disease (AD) and Progressive Supranuclear Palsy (PSP). Methods: We applied [18F]PI-2620 autoradiography to postmortem cortical brain samples of six patients with AD, five patients with PSP and five healthy controls, respectively. Binding intensity was compared between both tissue types and different disease entities. Autoradiography signal quantification (CWMR = cortex to white matter ratio) was correlated with the immunohistochemically assessed tau load (AT8-staining, %-area) for FFPE and frozen tissue samples in the different disease entities. Results: In AD tissue, relative cortical tracer binding was higher in frozen samples when compared to FFPE samples (CWMRfrozen vs. CWMRFFPE: 2.5-fold, p < 0.001), whereas the opposite was observed in PSP tissue (CWMRfrozen vs. CWMRFFPE: 0.8-fold, p = 0.004). In FFPE samples, [18F]PI-2620 autoradiography tracer binding and immunohistochemical tau load correlated significantly for both PSP (R = 0.641, p < 0.001) and AD tissue (R = 0.435, p = 0.016), indicating a high agreement of relative tracer binding with underlying pathology. In frozen tissue, the correlation between autoradiography and immunohistochemistry was only present in AD (R = 0.417, p = 0.014) but not in PSP tissue (R = -0.115, p = n.s.). Conclusion: Our head-to-head comparison indicates that FFPE samples show superiority over frozen samples for autoradiography assessment of PSP tau pathology by [18F]PI-2620. The [18F]PI-2620 autoradiography signal in FFPE samples reflects AT8 positive tau in samples of both PSP and AD patients.

12.
J Cereb Blood Flow Metab ; 41(11): 2957-2972, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34044665

RESUMEN

The novel tau-PET tracer [18F]PI-2620 detects the 3/4-repeat-(R)-tauopathy Alzheimer's disease (AD) and the 4R-tauopathies corticobasal syndrome (CBS) and progressive supranuclear palsy (PSP). We determined whether [18F]PI-2620 binding characteristics deriving from non-invasive reference tissue modelling differentiate 3/4R- and 4R-tauopathies. Ten patients with a 3/4R tauopathy (AD continuum) and 29 patients with a 4R tauopathy (CBS, PSP) were evaluated. [18F]PI-2620 PET scans were acquired 0-60 min p.i. and the distribution volume ratio (DVR) was calculated. [18F]PI-2620-positive clusters (DVR ≥ 2.5 SD vs. 11 healthy controls) were evaluated by non-invasive kinetic modelling. R1 (delivery), k2 & k2a (efflux), DVR, 30-60 min standardized-uptake-value-ratios (SUVR30-60) and the linear slope of post-perfusion phase SUVR (9-60 min p.i.) were compared between 3/4R- and 4R-tauopathies. Cortical clusters of 4R-tau cases indicated higher delivery (R1SRTM: 0.92 ± 0.21 vs. 0.83 ± 0.10, p = 0.0007), higher efflux (k2SRTM: 0.17/min ±0.21/min vs. 0.06/min ± 0.07/min, p < 0.0001), lower DVR (1.1 ± 0.1 vs. 1.4 ± 0.2, p < 0.0001), lower SUVR30-60 (1.3 ± 0.2 vs. 1.8 ± 0.3, p < 0.0001) and flatter slopes of the post-perfusion phase (slope9-60: 0.006/min ± 0.007/min vs. 0.016/min ± 0.008/min, p < 0.0001) when compared to 3/4R-tau cases. [18F]PI-2620 binding characteristics in cortical regions differentiate 3/4R- and 4R-tauopathies. Higher tracer clearance indicates less stable binding in 4R tauopathies when compared to 3/4R-tauopathies.


Asunto(s)
Neuroimagen/métodos , Tomografía de Emisión de Positrones/métodos , Radiofármacos , Tauopatías/diagnóstico por imagen , Proteínas tau/análisis , Radioisótopos de Flúor , Humanos , Interpretación de Imagen Asistida por Computador/métodos , Isoformas de Proteínas/análisis
13.
Eur J Nucl Med Mol Imaging ; 48(12): 3872-3885, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34021393

RESUMEN

PURPOSE: Dynamic 60-min positron emission tomography (PET) imaging with the novel tau radiotracer [18F]PI-2620 facilitated accurate discrimination between patients with progressive supranuclear palsy (PSP) and healthy controls (HCs). This study investigated if truncated acquisition and static time windows can be used for [18F]PI-2620 tau-PET imaging of PSP. METHODS: Thirty-seven patients with PSP Richardson syndrome (PSP-RS) were evaluated together with ten HCs. [18F]PI-2620 PET was performed by a dynamic 60-min scan. Distribution volume ratios (DVRs) were calculated using full and truncated scan durations (0-60, 0-50, 0-40, 0-30, and 0-20 min p.i.). Standardized uptake value ratios (SUVrs) were obtained 20-40, 30-50, and 40-60 min p.i.. All DVR and SUVr data were compared with regard to their potential to discriminate patients with PSP-RS from HCs in predefined subcortical and cortical target regions (effect size, area under the curve (AUC), multi-region classifier). RESULTS: 0-50 and 0-40 DVR showed equivalent effect sizes as 0-60 DVR (averaged Cohen's d: 1.22 and 1.16 vs. 1.26), whereas the performance dropped for 0-30 or 0-20 DVR. The 20-40 SUVr indicated the best performance of all static acquisition windows (averaged Cohen's d: 0.99). The globus pallidus internus discriminated patients with PSP-RS and HCs at a similarly high level for 0-60 DVR (AUC: 0.96), 0-40 DVR (AUC: 0.96), and 20-40 SUVr (AUC: 0.94). The multi-region classifier sensitivity of these time windows was consistently 86%. CONCLUSION: Truncated and static imaging windows can be used for [18F]PI-2620 PET imaging of PSP. 0-40 min dynamic scanning offers the best balance between accuracy and economic scanning.


Asunto(s)
Enfermedad de Alzheimer , Parálisis Supranuclear Progresiva , Estudios de Factibilidad , Humanos , Tomografía de Emisión de Positrones , Parálisis Supranuclear Progresiva/diagnóstico por imagen , Proteínas tau
14.
Front Aging Neurosci ; 13: 611595, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33603657

RESUMEN

Objectives: Asymmetric disease characteristics on neuroimaging are common in structural and functional imaging of neurodegenerative diseases, particularly in Alzheimer's disease (AD). However, a standardized clinical evaluation of asymmetric neuronal degeneration and its impact on clinical findings has only sporadically been investigated for F-18-fluorodeoxyglucose positron emission tomography (F-18-FDG-PET). This study aimed to evaluate the impact of lateralized neuronal degeneration on the detection of AD by detailed clinical testing. Furthermore, we compared associations between clinical evaluation and lateralized neuronal degeneration between FDG-PET hypometabolism and hippocampal atrophy. Finally, we investigated if specific subtests show associations with lateralized neuronal degeneration. Methods: One-hundred and forty-six patients with a clinical diagnosis of AD (age 71 ± 8) were investigated by FDG-PET and the "Consortium to Establish a Registry for Alzheimer's disease" (CERAD) test battery. For assessment of neuronal degeneration, FDG-PET hypometabolism in brain regions typically affected in AD were graded by visual (3D-surface projections) and semiquantitative analysis. Asymmetry of the hippocampus (left-right) in magnetic resonance tomography (MRI) was rated visually by the Scheltens scale. Measures of asymmetry were calculated to quantify lateralized neuronal degeneration and asymmetry scores were subsequently correlated with CERAD. Results: Asymmetry with left-dominant neuronal degeneration to FDG-PET was an independent predictor of cognitive impairment (visual: ß = -0.288, p < 0.001; semiquantitative: ß = -0.451, p < 0.001) when controlled for age, gender, years of education and total burden of neuronal degeneration, whereas hippocampal asymmetry to MRI was not (ß = -0.034; p = 0.731). Direct comparison of CERAD-PET associations in cases with right- and left-lateralized neuronal degeneration estimated a detection gap of 2.7 years for right-lateralized cases. Left-hemispheric neuronal degeneration was significantly associated with the total CERAD score and multiple subscores, whereas only MMSE (semiquantitative: ß = 0.429, p < 0.001) and constructional praxis (semiquantitative: ß = 0.292, p = 0.008) showed significant associations with right-hemispheric neuronal degeneration. Conclusions: Asymmetry of deteriorated cerebral glucose metabolism has a significant impact on the coupling between neuronal degeneration and cognitive function. Right dominant neuronal degeneration shows a delayed detection by global CERAD testing and requires evaluation of specific subdomains of cognitive testing.

15.
Neuroimage Clin ; 29: 102535, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33369564

RESUMEN

BACKGROUND AND OBJECTIVE: Reserve is defined as the ability to maintain cognitive functions relatively well at a given level of pathology. Early life experiences such as education are associated with lower dementia risk in general. However, whether more years of education guards against the impact of brain alterations also in frontotemporal dementia (FTD) has not been shown in a large patient collective. Therefore, we assessed whether education is associated with relatively high cognitive performance despite the presence of [18F]-fluorodeoxyglucose positron-emission-tomography (FDG-PET) hypometabolism in FTD. METHODS: Sixty-six FTD subjects (age 67 ± 8 years) and twenty-four cognitively healthy controls (HC) were evaluated. Brain regions with FTD-related glucose hypometabolism in the contrast against HC and brain regions that correlate with the cognitive function were defined by a voxel-based analysis and individual FDG-PET values were extracted from all frontotemporal brain areas. Linear regression analysis served to test if education is associated with residualized cognitive performance and regional FDG-PET hypometabolism after controlling for global cognition. RESULTS: Compared to healthy controls, patients with FTD showed glucose hypometabolism in bilateral frontal and temporal brain areas whereas cognition was only associated with deteriorated glucose metabolism in the left temporal lobe. The education level was significantly correlated with the residualized cognitive performance (residuals from regression analysis between hypometabolism and cognitive function as a quantitative index of reserve) and also negatively correlated with left temporal FDG-PET hypometabolism after controlling for cognition. CONCLUSIONS: In patients with FTD, the education level predicts the existing left temporal FDG-PET hypometabolism at the same cognition level, supporting the cognitive reserve hypothesis in FTD.


Asunto(s)
Reserva Cognitiva , Demencia Frontotemporal , Anciano , Encéfalo , Fluorodesoxiglucosa F18 , Demencia Frontotemporal/diagnóstico por imagen , Humanos , Persona de Mediana Edad , Tomografía de Emisión de Positrones , Radiofármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...