Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 10(6): 5511-5518, 2018 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-29355018

RESUMEN

Current-voltage hysteresis is a major issue for normal architecture organo-halide perovskite solar cells. In this manuscript we reveal a several-angstrom thick methylammonium iodide-rich interface between the perovskite and the metal oxide. Surface functionalization via self-assembled monolayers allowed us to control the composition of the interface monolayer from Pb poor to Pb rich, which, in parallel, suppresses hysteresis in perovskite solar cells. The bulk of the perovskite films is not affected by the interface engineering and remains highly crystalline in the surface-normal direction over the whole film thickness. The subnanometer structural modifications of the buried interface were revealed by X-ray reflectivity, which is most sensitive to monitor changes in the mass density of only several-angstrom thin interfacial layers as a function of substrate functionalization. From Kelvin probe force microscopy study on a solar cell cross section, we further demonstrate local variations of the potential on different electron-transporting layers within a solar cell. On the basis of these findings, we present a unifying model explaining hysteresis in perovskite solar cells, giving an insight into one crucial aspect of hysteresis for the first time and paving way for new strategies in the field of perovskite-based opto-electronic devices.

2.
Science ; 358(6367): 1192-1197, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-29123021

RESUMEN

A major bottleneck delaying the further commercialization of thin-film solar cells based on hybrid organohalide lead perovskites is interface loss in state-of-the-art devices. We present a generic interface architecture that combines solution-processed, reliable, and cost-efficient hole-transporting materials without compromising efficiency, stability, or scalability of perovskite solar cells. Tantalum-doped tungsten oxide (Ta-WO x )/conjugated polymer multilayers offer a surprisingly small interface barrier and form quasi-ohmic contacts universally with various scalable conjugated polymers. In a simple device with regular planar architecture and a self-assembled monolayer, Ta-WO x -doped interface-based perovskite solar cells achieve maximum efficiencies of 21.2% and offer more than 1000 hours of light stability. By eliminating additional ionic dopants, these findings open up the entire class of organics as scalable hole-transporting materials for perovskite solar cells.

3.
Adv Mater ; 27(48): 8023-7, 2015 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-26524344

RESUMEN

Tuning the electrostatics of ethylene-glycol-based self-assembled monolayers (SAMs) by doping with ions is shown. Molecular dynamics simulations unravel binding mechanisms and predict dipole strengths of the doped layers. Additionally, by applying such layers as dielectrics in organic thin-film transistors, the incorporated ions are proven to enhance device performance by lowering the threshold voltage and increasing conductivity.

4.
Nat Commun ; 4: 2047, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23797513

RESUMEN

Sustainable biomass production is expected to be one of the major supporting pillars for future energy supply, as well as for renewable material provision. Algal beds represent an exciting resource for biomass/biofuel, fine chemicals and CO2 storage. Similar to other solar energy harvesting techniques, the efficiency of algal photosynthesis depends on the spectral overlap between solar irradiation and chloroplast absorption. Here we demonstrate that spectral conversion can be employed to significantly improve biomass growth and oxygen production rate in closed-cycle algae reactors. For this purpose, we adapt a photoluminescent phosphor of the type Ca0.59Sr0.40Eu0.01S, which enables efficient conversion of the green part of the incoming spectrum into red light to better match the Qy peak of chlorophyll b. Integration of a Ca0.59Sr0.40Eu0.01S backlight converter into a flat panel algae reactor filled with Haematococcus pluvialis as a model species results in significantly increased photosynthetic activity and algae reproduction rate.


Asunto(s)
Reactores Biológicos , Chlorophyta/fisiología , Chlorophyta/efectos de la radiación , Fotosíntesis/efectos de la radiación , Luz Solar , Biomasa , Clorofila/metabolismo , Cristalización , Electrones , Luminiscencia , Fenómenos Ópticos , Oxígeno/metabolismo , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...