Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Haematologica ; 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38654668

RESUMEN

The open reading frame 8 (ORF8) protein, encoded by the SARS-CoV-2 virus after infection, stimulates monocytes/macrophages to produce pro-inflammatory cytokines. We hypothesized that a positive ex vivo monocyte response to ORF8 protein pre-COVID-19 would be associated with subsequent severe COVID-19. We tested ORF8 ex vivo on peripheral blood mononuclear cells (PBMCs) from 26 anonymous healthy blood donors and measured intracellular cytokine/chemokine levels in monocytes by flow cytometry. The % monocytes staining positive in the sample and change in mean fluorescence intensity (ΔMFI) after ORF8 were used to calculate the adjusted MFI for each cytokine. We then tested pre-COVID-19 PBMC samples from 60 CLL patients who subsequently developed COVID-19 infection. Severe COVID-19 was defined as hospitalization due to COVID-19. In the 26 normal donor samples, the adjusted MFI for interleukin (IL)-1ß, IL-6, IL-8, and CCL-2 were significantly different with ORF8 stimulation vs controls. We next analyzed monocytes from pre-COVID-19 PBMC samples from 60 CLL patients. The adjusted MFI to ORF8 stimulation of monocyte intracellular IL-1ß was associated with severe COVID-19 and a reactive ORF8 monocyte response was defined as an IL- 1ß adjusted MFI ≥ 0.18 (sensitivity 67%, specificity 75%). The median time to hospitalization after infection in CLL patients with a reactive ORF8 response was 12 days versus not reached for patients with a non-reactive ORF8 response with a hazard ratio of 7.7 (95% CI: 2.4-132, p=0.005). These results provide new insight on the monocyte inflammatory response to virus with implications in a broad range of disorders involving monocytes.

2.
Nat Commun ; 15(1): 2064, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38453899

RESUMEN

FAM111A, a serine protease, plays roles in DNA replication and antiviral defense. Missense mutations in the catalytic domain cause hyper-autocleavage and are associated with genetic disorders with developmental defects. Despite the enzyme's biological significance, the molecular architecture of the FAM111A serine protease domain (SPD) is unknown. Here, we show that FAM111A is a dimerization-dependent protease containing a narrow, recessed active site that cleaves substrates with a chymotrypsin-like specificity. X-ray crystal structures and mutagenesis studies reveal that FAM111A dimerizes via the N-terminal helix within the SPD. This dimerization induces an activation cascade from the dimerization sensor loop to the oxyanion hole through disorder-to-order transitions. Dimerization is essential for proteolytic activity in vitro and for facilitating DNA replication at DNA-protein crosslink obstacles in cells, while it is dispensable for autocleavage. These findings underscore the role of dimerization in FAM111A's function and highlight the distinction in its dimerization dependency between substrate cleavage and autocleavage.


Asunto(s)
Serina Endopeptidasas , Serina Proteasas , Dimerización , Serina Endopeptidasas/metabolismo , Proteolisis , Replicación del ADN , Serina
3.
Nat Commun ; 14(1): 8341, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38097570

RESUMEN

The function of the mitogen-activated protein kinase signaling pathway is required for the activation of immediate early genes (IEGs), including EGR1 and FOS, for cell growth and proliferation. Recent studies have identified topoisomerase II (TOP2) as one of the important regulators of the transcriptional activation of IEGs. However, the mechanism underlying transcriptional regulation involving TOP2 in IEG activation has remained unknown. Here, we demonstrate that ERK2, but not ERK1, is important for IEG transcriptional activation and report a critical ELK1 binding sequence for ERK2 function at the EGR1 gene. Our data indicate that both ERK1 and ERK2 extensively phosphorylate the C-terminal domain of TOP2B at mutual and distinctive residues. Although both ERK1 and ERK2 enhance the catalytic rate of TOP2B required to relax positive DNA supercoiling, ERK2 delays TOP2B catalysis of negative DNA supercoiling. In addition, ERK1 may relax DNA supercoiling by itself. ERK2 catalytic inhibition or knock-down interferes with transcription and deregulates TOP2B in IEGs. Furthermore, we present the first cryo-EM structure of the human cell-purified TOP2B and etoposide together with the EGR1 transcriptional start site (-30 to +20) that has the strongest affinity to TOP2B within -423 to +332. The structure shows TOP2B-mediated breakage and dramatic bending of the DNA. Transcription is activated by etoposide, while it is inhibited by ICRF193 at EGR1 and FOS, suggesting that TOP2B-mediated DNA break to favor transcriptional activation. Taken together, this study suggests that activated ERK2 phosphorylates TOP2B to regulate TOP2-DNA interactions and favor transcriptional activation in IEGs. We propose that TOP2B association, catalysis, and dissociation on its substrate DNA are important processes for regulating transcription and that ERK2-mediated TOP2B phosphorylation may be key for the catalysis and dissociation steps.


Asunto(s)
Genes Inmediatos-Precoces , Proteína Quinasa 1 Activada por Mitógenos , Humanos , ADN/metabolismo , ADN-Topoisomerasas de Tipo II/genética , ADN-Topoisomerasas de Tipo II/metabolismo , Etopósido , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Fosforilación , Activación Transcripcional
4.
NPJ Breast Cancer ; 9(1): 101, 2023 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-38114522

RESUMEN

Endoxifen, a secondary tamoxifen metabolite, is a potent antiestrogen exhibiting estrogen receptor alpha (ERα) binding at nanomolar concentrations. Phase I/II clinical trials identified clinical activity of Z-endoxifen (ENDX), in endocrine-refractory metastatic breast cancer as well as ERα+ solid tumors, raising the possibility that ENDX may have a second, ERα-independent, mechanism of action. An unbiased mass spectrometry approach revealed that ENDX concentrations achieved clinically with direct ENDX administration (5 µM), but not low concentrations observed during tamoxifen treatment (<0.1 µM), profoundly altered the phosphoproteome of the aromatase expressing MCF7AC1 cells with limited impact on the total proteome. Computational analysis revealed protein kinase C beta (PKCß) and protein kinase B alpha or AKT1 as potential kinases responsible for mediating ENDX effects on protein phosphorylation. ENDX more potently inhibited PKCß1 kinase activity compared to other PKC isoforms, and ENDX binding to PKCß1 was confirmed using Surface Plasma Resonance. Under conditions that activated PKC/AKT signaling, ENDX induced PKCß1 degradation, attenuated PKCß1-activated AKTSer473 phosphorylation, diminished AKT substrate phosphorylation, and induced apoptosis. ENDX's effects on AKT were phenocopied by siRNA-mediated PKCß1 knockdown or treatment with the pan-AKT inhibitor, MK-2206, while overexpression of constitutively active AKT diminished ENDX-induced apoptosis. These findings, which identify PKCß1 as an ENDX target, indicate that PKCß1/ENDX interactions suppress AKT signaling and induce apoptosis in breast cancer.

5.
iScience ; 26(6): 106929, 2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37260746

RESUMEN

Despite extensive research, the specific factor associated with SARS-CoV-2 infection that mediates the life-threatening inflammatory cytokine response in patients with severe COVID-19 remains unidentified. Herein we demonstrate that the virus-encoded Open Reading Frame 8 (ORF8) protein is abundantly secreted as a glycoprotein in vitro and in symptomatic patients with COVID-19. ORF8 specifically binds to the NOD-like receptor family pyrin domain-containing 3 (NLRP3) in CD14+ monocytes to induce inflammasomal cytokine/chemokine responses including IL1ß, IL8, and CCL2. Levels of ORF8 protein in the blood correlate with severity and disease-specific mortality in patients with acute SARS-CoV-2 infection. Furthermore, the ORF8-induced inflammasome response was readily inhibited by the NLRP3 inhibitor MCC950 in vitro. Our study identifies a dominant cause of pathogenesis, its underlying mechanism, and a potential new treatment strategy for severe COVID-19.

6.
Am J Hum Genet ; 110(6): 989-997, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37167966

RESUMEN

Statins are a mainstay intervention for cardiovascular disease prevention, yet their use can cause rare severe myopathy. HMG-CoA reductase, an essential enzyme in the mevalonate pathway, is the target of statins. We identified nine individuals from five unrelated families with unexplained limb-girdle like muscular dystrophy and bi-allelic variants in HMGCR via clinical and research exome sequencing. The clinical features resembled other genetic causes of muscular dystrophy with incidental high CPK levels (>1,000 U/L), proximal muscle weakness, variable age of onset, and progression leading to impaired ambulation. Muscle biopsies in most affected individuals showed non-specific dystrophic changes with non-diagnostic immunohistochemistry. Molecular modeling analyses revealed variants to be destabilizing and affecting protein oligomerization. Protein activity studies using three variants (p.Asp623Asn, p.Tyr792Cys, and p.Arg443Gln) identified in affected individuals confirmed decreased enzymatic activity and reduced protein stability. In summary, we showed that individuals with bi-allelic amorphic (i.e., null and/or hypomorphic) variants in HMGCR display phenotypes that resemble non-genetic causes of myopathy involving this reductase. This study expands our knowledge regarding the mechanisms leading to muscular dystrophy through dysregulation of the mevalonate pathway, autoimmune myopathy, and statin-induced myopathy.


Asunto(s)
Inhibidores de Hidroximetilglutaril-CoA Reductasas , Enfermedades Musculares , Distrofia Muscular de Cinturas , Distrofias Musculares , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Ácido Mevalónico , Distrofia Muscular de Cinturas/genética , Distrofia Muscular de Cinturas/diagnóstico , Enfermedades Musculares/genética , Oxidorreductasas , Hidroximetilglutaril-CoA Reductasas/genética , Hidroximetilglutaril-CoA Reductasas/efectos adversos
7.
Protein Sci ; 31(9): e4383, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36040252

RESUMEN

Mammalian cell lines are important expression systems for large proteins and protein complexes, particularly when the acquisition of post-translational modifications in the protein's native environment is desired. However, low or variable transfection efficiencies are challenges that must be overcome to use such an expression system. Expression of recombinant proteins as a fluorescent protein fusion enables real-time monitoring of protein expression, and also provides an affinity handle for one-step protein purification using a suitable affinity reagent. Here, we describe a panel of anti-GFP and anti-mCherry nanobody affinity matrices and their efficacy for purification of GFP/YFP or mCherry fusion proteins. We define the molecular basis by which they bind their target proteins using X-ray crystallography. From these analyses, we define an optimal pair of nanobodies for purification of recombinant protein tagged with GFP/YFP or mCherry, and demonstrate these nanobody-sepharose supports are stable to many rounds of cleaning and extended incubation in denaturing conditions. Finally, we demonstrate the utility of the mCherry-tag system by using it to purify recombinant human topoisomerase 2α expressed in HEK293F cells. The mCherry-tag and GFP/YFP-tag expression systems can be utilized for recombinant protein expression individually or in tandem for mammalian protein expression systems where real-time monitoring of protein expression levels and a high-efficiency purification step is needed.


Asunto(s)
Anticuerpos de Dominio Único , Animales , Cromatografía de Afinidad , Cristalografía por Rayos X , Humanos , Mamíferos , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes , Anticuerpos de Dominio Único/genética , Anticuerpos de Dominio Único/metabolismo
8.
Open Biol ; 11(10): 210221, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34610268

RESUMEN

RNA polymerase II (Pol II)-dependent transcription in stimulus-inducible genes requires topoisomerase IIß (TOP2B)-mediated DNA strand break and the activation of DNA damage response signalling in humans. Here, we report a novel function of the breast cancer 1 (BRCA1)-BRCA1-associated ring domain 1 (BARD1) complex in this process. We found that BRCA1 is phosphorylated at S1524 by the kinases ataxia-telangiectasia mutated and ATR during gene activation, and that this event is important for productive transcription. Our biochemical and genomic analyses showed that the BRCA1-BARD1 complex interacts with TOP2B in the EGR1 transcription start site and in a large number of protein-coding genes. Intriguingly, the BRCA1-BARD1 complex ubiquitinates TOP2B, which stabilizes TOP2B binding to DNA while BRCA1 phosphorylation at S1524 controls the TOP2B ubiquitination by the complex. Together, these findings suggest the novel function of the BRCA1-BARD1 complex in the regulation of TOP2B and Pol II-mediated gene expression.


Asunto(s)
Proteína BRCA1/metabolismo , ADN-Topoisomerasas de Tipo II/metabolismo , Proteínas Inmediatas-Precoces/genética , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteína BRCA1/química , Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Regulación de la Expresión Génica , Células HEK293 , Células HeLa , Humanos , Mutación , Fosforilación , Sitio de Iniciación de la Transcripción , Transcripción Genética , Ubiquitinación
9.
Nucleic Acids Res ; 49(3): 1619-1630, 2021 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-33444456

RESUMEN

Human DNA ligase I (LIG1) is the main replicative ligase and it also seals DNA breaks to complete DNA repair and recombination pathways. Immune compromised patients harbor hypomorphic LIG1 alleles encoding substitutions of conserved arginine residues, R771W and R641L, that compromise LIG1 activity through poorly defined mechanisms. To understand the molecular basis of LIG1 syndrome mutations, we determined high resolution X-ray structures and performed systematic biochemical characterization of LIG1 mutants using steady-state and pre-steady state kinetic approaches. Our results unveil a cooperative network of plastic DNA-LIG1 interactions that connect DNA substrate engagement with productive binding of Mg2+ cofactors for catalysis. LIG1 syndrome mutations destabilize this network, compromising Mg2+ binding affinity, decreasing ligation efficiency, and leading to elevated abortive ligation that may underlie the disease pathology. These findings provide novel insights into the fundamental mechanism by which DNA ligases engage with a nicked DNA substrate, and they suggest that disease pathology of LIG1 syndrome could be modulated by Mg2+ levels.


Asunto(s)
ADN Ligasa (ATP)/química , ADN Ligasa (ATP)/genética , Mutación , Enfermedades de Inmunodeficiencia Primaria/genética , Sitios de Unión , ADN/metabolismo , ADN Ligasa (ATP)/metabolismo , Humanos , Ligandos , Magnesio/química , Modelos Moleculares , Pliegue de Proteína , Síndrome
10.
Cell ; 182(2): 481-496.e21, 2020 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-32649862

RESUMEN

The response to DNA damage is critical for cellular homeostasis, tumor suppression, immunity, and gametogenesis. In order to provide an unbiased and global view of the DNA damage response in human cells, we undertook 31 CRISPR-Cas9 screens against 27 genotoxic agents in the retinal pigment epithelium-1 (RPE1) cell line. These screens identified 890 genes whose loss causes either sensitivity or resistance to DNA-damaging agents. Mining this dataset, we discovered that ERCC6L2 (which is mutated in a bone-marrow failure syndrome) codes for a canonical non-homologous end-joining pathway factor, that the RNA polymerase II component ELOF1 modulates the response to transcription-blocking agents, and that the cytotoxicity of the G-quadruplex ligand pyridostatin involves trapping topoisomerase II on DNA. This map of the DNA damage response provides a rich resource to study this fundamental cellular system and has implications for the development and use of genotoxic agents in cancer therapy.


Asunto(s)
Daño del ADN , Redes Reguladoras de Genes/fisiología , Aminoquinolinas/farmacología , Animales , Sistemas CRISPR-Cas/genética , Línea Celular , Citocromo-B(5) Reductasa/genética , Citocromo-B(5) Reductasa/metabolismo , Daño del ADN/efectos de los fármacos , ADN Helicasas/genética , ADN Helicasas/metabolismo , Reparación del ADN , ADN-Topoisomerasas de Tipo II/genética , ADN-Topoisomerasas de Tipo II/metabolismo , Humanos , Ratones , Ácidos Picolínicos/farmacología , ARN Guía de Kinetoplastida/metabolismo , Proteína p53 Supresora de Tumor/deficiencia , Proteína p53 Supresora de Tumor/genética
11.
Nucleic Acids Res ; 48(11): 6310-6325, 2020 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-32356875

RESUMEN

Tyrosyl-DNA phosphodiesterase 2 (TDP2) reverses Topoisomerase 2 DNA-protein crosslinks (TOP2-DPCs) in a direct-reversal pathway licensed by ZATTZNF451 SUMO2 E3 ligase and SUMOylation of TOP2. TDP2 also binds ubiquitin (Ub), but how Ub regulates TDP2 functions is unknown. Here, we show that TDP2 co-purifies with K63 and K27 poly-Ubiquitinated cellular proteins independently of, and separately from SUMOylated TOP2 complexes. Poly-ubiquitin chains of ≥ Ub3 stimulate TDP2 catalytic activity in nuclear extracts and enhance TDP2 binding of DNA-protein crosslinks in vitro. X-ray crystal structures and small-angle X-ray scattering analysis of TDP2-Ub complexes reveal that the TDP2 UBA domain binds K63-Ub3 in a 1:1 stoichiometric complex that relieves a UBA-regulated autoinhibitory state of TDP2. Our data indicates that that poly-Ub regulates TDP2-catalyzed TOP2-DPC removal, and TDP2 single nucleotide polymorphisms can disrupt the TDP2-Ubiquitin interface.


Asunto(s)
ADN-Topoisomerasas de Tipo II/metabolismo , Proteínas de Unión al ADN/metabolismo , ADN/metabolismo , Hidrolasas Diéster Fosfóricas/metabolismo , Ubiquitina/metabolismo , Sitios de Unión/genética , Dominio Catalítico , Cristalografía por Rayos X , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Humanos , Modelos Moleculares , Mutación , Hidrolasas Diéster Fosfóricas/química , Hidrolasas Diéster Fosfóricas/genética , Poliubiquitina/química , Poliubiquitina/genética , Poliubiquitina/metabolismo , Unión Proteica , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Especificidad por Sustrato , Sumoilación , Ubiquitina/química , Ubiquitina/genética
12.
Cell Mol Life Sci ; 77(1): 81-91, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31728578

RESUMEN

The compaction of DNA and the continuous action of DNA transactions, including transcription and DNA replication, create complex DNA topologies that require Type IIA Topoisomerases, which resolve DNA topological strain and control genome dynamics. The human TOP2 enzymes catalyze their reactions via formation of a reversible covalent enzyme DNA-protein crosslink, the TOP2 cleavage complex (TOP2cc). Spurious interactions of TOP2 with DNA damage, environmental toxicants and chemotherapeutic "poisons" perturbs the TOP2 reaction cycle, leading to an accumulation of DNA-protein crosslinks, and ultimately, genomic instability and cell death. Emerging evidence shows that TOP2-DNA protein crosslink (DPC) repair entails multiple strand break repair activities, such as removal of the poisoned TOP2 protein and rejoining of the DNA ends through homologous recombination (HR) or non-homologous end joining (NHEJ). Herein, we discuss the molecular mechanisms of TOP2-DPC resolution, with specific emphasis on the recently uncovered ZATTZnf451-licensed TDP2-catalyzed TOP2-DPC reversal mechanism.


Asunto(s)
Roturas del ADN , Reparación del ADN , ADN-Topoisomerasas de Tipo II/metabolismo , ADN/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Aminoaciltransferasas/química , Aminoaciltransferasas/metabolismo , Animales , ADN/química , ADN/genética , ADN-Topoisomerasas de Tipo II/química , Humanos , Proteínas de Unión a Poli-ADP-Ribosa/química , Conformación Proteica , Sumoilación , Factores de Transcripción/química , Factores de Transcripción/metabolismo
13.
Nat Commun ; 10(1): 5431, 2019 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-31780661

RESUMEN

DNA ligases catalyze the joining of DNA strands to complete DNA replication, recombination and repair transactions. To protect the integrity of the genome, DNA ligase 1 (LIG1) discriminates against DNA junctions harboring mutagenic 3'-DNA mismatches or oxidative DNA damage, but how such high-fidelity ligation is enforced is unknown. Here, X-ray structures and kinetic analyses of LIG1 complexes with undamaged and oxidatively damaged DNA unveil that LIG1 employs Mg2+-reinforced DNA binding to validate DNA base pairing during the adenylyl transfer and nick-sealing ligation reaction steps. Our results support a model whereby LIG1 fidelity is governed by a high-fidelity (HiFi) interface between LIG1, Mg2+, and the DNA substrate that tunes the enzyme to release pro-mutagenic DNA nicks. In a second tier of protection, LIG1 activity is surveilled by Aprataxin (APTX), which suppresses mutagenic and abortive ligation at sites of oxidative DNA damage.


Asunto(s)
ADN Ligasa (ATP)/metabolismo , Proteínas de Unión al ADN/metabolismo , ADN/metabolismo , Magnesio/metabolismo , Proteínas Nucleares/metabolismo , ADN/ultraestructura , Roturas del ADN de Cadena Simple , Daño del ADN , ADN Ligasa (ATP)/ultraestructura , Reparación del ADN , Replicación del ADN , Guanina/análogos & derivados , Guanina/metabolismo , Humanos , Conformación de Ácido Nucleico , Oxidación-Reducción , Estructura Terciaria de Proteína , Reparación del ADN por Recombinación
14.
Nat Commun ; 9(1): 2642, 2018 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-29980672

RESUMEN

DNA ligase IV (LigIV) performs the final DNA nick-sealing step of classical nonhomologous end-joining, which is critical for immunoglobulin gene maturation and efficient repair of genotoxic DNA double-strand breaks. Hypomorphic LigIV mutations cause extreme radiation sensitivity and immunodeficiency in humans. To better understand the unique features of LigIV function, here we report the crystal structure of the catalytic core of human LigIV in complex with a nicked nucleic acid substrate in two distinct states-an open lysyl-AMP intermediate, and a closed DNA-adenylate form. Results from structural and mutagenesis experiments unveil a dynamic LigIV DNA encirclement mechanism characterized by extensive interdomain interactions and active site phosphoanhydride coordination, all of which are required for efficient DNA nick sealing. These studies provide a scaffold for defining impacts of LigIV catalytic core mutations and deficiencies in human LIG4 syndrome.


Asunto(s)
Biocatálisis , Dominio Catalítico , ADN Ligasa (ATP)/química , ADN Ligasa (ATP)/metabolismo , ADN/metabolismo , Adenina/metabolismo , Secuencia de Bases , ADN Ligasa (ATP)/genética , Humanos , Lisina/metabolismo , Mutagénesis/genética , Mutación/genética , Polimorfismo Genético , Unión Proteica , Especificidad por Sustrato
15.
EMBO J ; 37(14)2018 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-29934293

RESUMEN

The failure of DNA ligases to complete their catalytic reactions generates cytotoxic adenylated DNA strand breaks. The APTX RNA-DNA deadenylase protects genome integrity and corrects abortive DNA ligation arising during ribonucleotide excision repair and base excision DNA repair, and APTX human mutations cause the neurodegenerative disorder ataxia with oculomotor ataxia 1 (AOA1). How APTX senses cognate DNA nicks and is inactivated in AOA1 remains incompletely defined. Here, we report X-ray structures of APTX engaging nicked RNA-DNA substrates that provide direct evidence for a wedge-pivot-cut strategy for 5'-AMP resolution shared with the alternate 5'-AMP processing enzymes POLß and FEN1. Our results uncover a DNA-induced fit mechanism regulating APTX active site loop conformations and assembly of a catalytically competent active center. Further, based on comprehensive biochemical, X-ray and solution NMR results, we define a complex hierarchy for the differential impacts of the AOA1 mutational spectrum on APTX structure and activity. Sixteen AOA1 variants impact APTX protein stability, one mutation directly alters deadenylation reaction chemistry, and a dominant AOA1 variant unexpectedly allosterically modulates APTX active site conformations.


Asunto(s)
Roturas del ADN de Cadena Simple , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , ADN/química , ADN/metabolismo , Enfermedades Neurodegenerativas/patología , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , Análisis Mutacional de ADN , Proteínas de Unión al ADN/genética , Humanos , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Proteínas Nucleares/genética , Unión Proteica , Conformación Proteica , Estabilidad Proteica , ARN/química , ARN/metabolismo
16.
Protein Sci ; 27(6): 1083-1092, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29577475

RESUMEN

Recombinant protein expression systems that produce high yields of pure proteins and multi-protein complexes are essential to meet the needs of biologists, biochemists, and structural biologists using X-ray crystallography and cryo-electron microscopy. An ideal expression system for recombinant human proteins is cultured human cells where the correct translation and chaperone machinery are present. However, compared to bacterial expression systems, human cell cultures present several technical challenges to their use as an expression system. We developed a method that utilizes a YFP fusion-tag to generate recombinant proteins using suspension-cultured HEK293F cells. YFP is a dual-function tag that enables direct visualization and fluorescence-based selection of high expressing clones for and rapid purification using a high-stringency, high-affinity anti-GFP/YFP nanobody support. We demonstrate the utility of this system by expressing two large human proteins, TOP2α (340 KDa dimer) and a TOP2ß catalytic core (260 KDa dimer). This robustly and reproducibly yields >10 mg/L liter of cell culture using transient expression or 2.5 mg/L using stable expression.


Asunto(s)
Proteínas Fluorescentes Verdes , Proteínas Recombinantes/biosíntesis , Anticuerpos de Dominio Único , Cristalografía por Rayos X , Fluorescencia , Células HEK293 , Humanos
17.
Science ; 357(6358): 1412-1416, 2017 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-28912134

RESUMEN

Topoisomerase 2 (TOP2) DNA transactions proceed via formation of the TOP2 cleavage complex (TOP2cc), a covalent enzyme-DNA reaction intermediate that is vulnerable to trapping by potent anticancer TOP2 drugs. How genotoxic TOP2 DNA-protein cross-links are resolved is unclear. We found that the SUMO (small ubiquitin-related modifier) ligase ZATT (ZNF451) is a multifunctional DNA repair factor that controls cellular responses to TOP2 damage. ZATT binding to TOP2cc facilitates a proteasome-independent tyrosyl-DNA phosphodiesterase 2 (TDP2) hydrolase activity on stalled TOP2cc. The ZATT SUMO ligase activity further promotes TDP2 interactions with SUMOylated TOP2, regulating efficient TDP2 recruitment through a "split-SIM" SUMO2 engagement platform. These findings uncover a ZATT-TDP2-catalyzed and SUMO2-modulated pathway for direct resolution of TOP2cc.


Asunto(s)
Daño del ADN , Reparación del ADN , ADN-Topoisomerasas de Tipo II/metabolismo , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Aminoaciltransferasas , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biocatálisis , Dominio Catalítico , ADN/genética , ADN/metabolismo , ADN-Topoisomerasas de Tipo II/genética , Proteínas de Unión al ADN , Etopósido/farmacología , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Inmunoprecipitación , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Ratones , Proteínas Nucleares/genética , Hidrolasas Diéster Fosfóricas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Sumoilación , Inhibidores de Topoisomerasa II/farmacología , Factores de Transcripción/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
18.
Nucleic Acids Res ; 44(8): 3829-44, 2016 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-27060144

RESUMEN

Mammalian Tyrosyl-DNA phosphodiesterase 2 (Tdp2) reverses Topoisomerase 2 (Top2) DNA-protein crosslinks triggered by Top2 engagement of DNA damage or poisoning by anticancer drugs. Tdp2 deficiencies are linked to neurological disease and cellular sensitivity to Top2 poisons. Herein, we report X-ray crystal structures of ligand-free Tdp2 and Tdp2-DNA complexes with alkylated and abasic DNA that unveil a dynamic Tdp2 active site lid and deep substrate binding trench well-suited for engaging the diverse DNA damage triggers of abortive Top2 reactions. Modeling of a proposed Tdp2 reaction coordinate, combined with mutagenesis and biochemical studies support a single Mg(2+)-ion mechanism assisted by a phosphotyrosyl-arginine cation-π interface. We further identify a Tdp2 active site SNP that ablates Tdp2 Mg(2+) binding and catalytic activity, impairs Tdp2 mediated NHEJ of tyrosine blocked termini, and renders cells sensitive to the anticancer agent etoposide. Collectively, our results provide a structural mechanism for Tdp2 engagement of heterogeneous DNA damage that causes Top2 poisoning, and indicate that evaluation of Tdp2 status may be an important personalized medicine biomarker informing on individual sensitivities to chemotherapeutic Top2 poisons.


Asunto(s)
Daño del ADN , ADN-Topoisomerasas de Tipo II/metabolismo , Hidrolasas Diéster Fosfóricas/química , Péptidos y Proteínas Asociados a Receptores de Factores de Necrosis Tumoral/química , Animales , Dominio Catalítico , ADN/química , ADN/metabolismo , Aductos de ADN/química , Aductos de ADN/metabolismo , Reparación del ADN por Unión de Extremidades , ADN-Topoisomerasas de Tipo II/química , Proteínas de Unión al ADN , Humanos , Magnesio/química , Ratones , Ratones Noqueados , Modelos Moleculares , Mutación , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/metabolismo , Fosfotirosina/metabolismo , Polimorfismo de Nucleótido Simple , Factores de Transcripción/química , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Péptidos y Proteínas Asociados a Receptores de Factores de Necrosis Tumoral/genética , Péptidos y Proteínas Asociados a Receptores de Factores de Necrosis Tumoral/metabolismo
19.
Prog Biophys Mol Biol ; 117(2-3): 157-165, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25637650

RESUMEN

Eukaryotic DNA ligases seal DNA breaks in the final step of DNA replication and repair transactions via a three-step reaction mechanism that can abort if DNA ligases encounter modified DNA termini, such as the products and repair intermediates of DNA oxidation, alkylation, or the aberrant incorporation of ribonucleotides into genomic DNA. Such abortive DNA ligation reactions act as molecular checkpoint for DNA damage and create 5'-adenylated nucleic acid termini in the context of DNA and RNA-DNA substrates in DNA single strand break repair (SSBR) and ribonucleotide excision repair (RER). Aprataxin (APTX), a protein altered in the heritable neurological disorder Ataxia with Oculomotor Apraxia 1 (AOA1), acts as a DNA ligase "proofreader" to directly reverse AMP-modified nucleic acid termini in DNA- and RNA-DNA damage responses. Herein, we survey APTX function and the emerging cell biological, structural and biochemical data that has established a molecular foundation for understanding the APTX mediated deadenylation reaction, and is providing insights into the molecular bases of APTX deficiency in AOA1.


Asunto(s)
Reparación del ADN , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , ADN/química , ADN/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Ataxias Espinocerebelosas/congénito , Animales , Sitios de Unión , ADN/ultraestructura , Daño del ADN , Proteínas de Unión al ADN/ultraestructura , Exorribonucleasas/química , Exorribonucleasas/metabolismo , Exorribonucleasas/ultraestructura , Humanos , Modelos Químicos , Modelos Moleculares , Proteínas Nucleares/ultraestructura , Unión Proteica , ARN/química , ARN/metabolismo , ARN/ultraestructura , Ataxias Espinocerebelosas/metabolismo , Relación Estructura-Actividad
20.
Environ Mol Mutagen ; 56(1): 1-21, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25111769

RESUMEN

Exposure to environmental toxicants and stressors, radiation, pharmaceutical drugs, inflammation, cellular respiration, and routine DNA metabolism all lead to the production of cytotoxic DNA strand breaks. Akin to splintered wood, DNA breaks are not "clean." Rather, DNA breaks typically lack DNA 5'-phosphate and 3'-hydroxyl moieties required for DNA synthesis and DNA ligation. Failure to resolve damage at DNA ends can lead to abnormal DNA replication and repair, and is associated with genomic instability, mutagenesis, neurological disease, ageing and carcinogenesis. An array of chemically heterogeneous DNA termini arises from spontaneously generated DNA single-strand and double-strand breaks (SSBs and DSBs), and also from normal and/or inappropriate DNA metabolism by DNA polymerases, DNA ligases and topoisomerases. As a front line of defense to these genotoxic insults, eukaryotic cells have accrued an arsenal of enzymatic first responders that bind and protect damaged DNA termini, and enzymatically tailor DNA ends for DNA repair synthesis and ligation. These nucleic acid transactions employ direct damage reversal enzymes including Aprataxin (APTX), Polynucleotide kinase phosphatase (PNK), the tyrosyl DNA phosphodiesterases (TDP1 and TDP2), the Ku70/80 complex and DNA polymerase ß (POLß). Nucleolytic processing enzymes such as the MRE11/RAD50/NBS1/CtIP complex, Flap endonuclease (FEN1) and the apurinic endonucleases (APE1 and APE2) also act in the chemical "cleansing" of DNA breaks to prevent genomic instability and disease, and promote progression of DNA- and RNA-DNA damage response (DDR and RDDR) pathways. Here, we provide an overview of cellular first responders dedicated to the detection and repair of abnormal DNA termini.


Asunto(s)
Daño del ADN/genética , Reparación del ADN/genética , ADN/química , ADN/genética , Animales , Progresión de la Enfermedad , Inestabilidad Genómica , Humanos , Conformación de Ácido Nucleico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA