Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Psychiatry ; 18(11): 1225-34, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23399914

RESUMEN

Genome-wide association studies (GWAS) have identified a region upstream the BIN1 gene as the most important genetic susceptibility locus in Alzheimer's disease (AD) after APOE. We report that BIN1 transcript levels were increased in AD brains and identified a novel 3 bp insertion allele ∼28 kb upstream of BIN1, which increased (i) transcriptional activity in vitro, (ii) BIN1 expression levels in human brain and (iii) AD risk in three independent case-control cohorts (Meta-analysed Odds ratio of 1.20 (1.14-1.26) (P=3.8 × 10(-11))). Interestingly, decreased expression of the Drosophila BIN1 ortholog Amph suppressed Tau-mediated neurotoxicity in three different assays. Accordingly, Tau and BIN1 colocalized and interacted in human neuroblastoma cells and in mouse brain. Finally, the 3 bp insertion was associated with Tau but not Amyloid loads in AD brains. We propose that BIN1 mediates AD risk by modulating Tau pathology.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Predisposición Genética a la Enfermedad/genética , Proteínas Nucleares/genética , Proteínas Supresoras de Tumor/genética , Proteínas tau/metabolismo , Proteínas Adaptadoras Transductoras de Señales/biosíntesis , Enfermedad de Alzheimer/metabolismo , Animales , Encéfalo/metabolismo , Encéfalo/patología , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Estudios de Casos y Controles , Células Cultivadas , Proteínas de Drosophila/deficiencia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Endofenotipos , Expresión Génica/genética , Humanos , Ratones , Degeneración Nerviosa/genética , Degeneración Nerviosa/patología , Proteínas Nucleares/biosíntesis , Placa Amiloide/patología , Polimorfismo de Nucleótido Simple/genética , Sinaptosomas/patología , Factores de Transcripción/deficiencia , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/biosíntesis , Proteínas tau/antagonistas & inhibidores
2.
Cell Death Differ ; 19(10): 1590-601, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22498699

RESUMEN

Understanding mechanisms controlling neuronal cell death and survival under conditions of altered energy supply (e.g., during stroke) is fundamentally important for the development of therapeutic strategies. The function of autophagy herein is unclear, as both its beneficial and detrimental roles have been described. We previously demonstrated that loss of AMP-activated protein kinase (AMPK), an evolutionarily conserved enzyme that maintains cellular energy balance, leads to activity-dependent degeneration in neuronal tissue. Here, we show that energy depletion in Drosophila AMPK mutants results in increased autophagy that convincingly promotes, rather than rescues, neurodegeneration. The generated excessive autophagic response is accompanied by increased TOR and S6K activity in the absence of an AMPK-mediated negative regulatory feedback loop. Moreover, energy-depleted neurons use a phagocytic-like process as a means to cellular survival at the expense of surrounding cells. Consequently, phagocytosis stimulation by expression of the scavenger receptor Croquemort significantly delays neurodegeneration. This study thus reveals a potentially novel strategy for cellular survival during conditions of extreme energy depletion, resembling xeno-cannibalistic events seen in metastatic tumors. We provide new insights into the roles of autophagy and phagocytosis in the neuronal metabolic stress response and open new avenues into understanding of human disease and development of therapeutic strategies.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Autofagia/efectos de los fármacos , Citofagocitosis/efectos de los fármacos , Cloruro de Litio/farmacología , Proteínas Quinasas Activadas por AMP/deficiencia , Proteínas Quinasas Activadas por AMP/genética , Animales , Drosophila/enzimología , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Metabolismo Energético , Neuronas/citología , Neuronas/metabolismo , Proteínas Quinasas S6 Ribosómicas/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
3.
J Bone Joint Surg Am ; 83-A Suppl 1(Pt 1): S40-7, 2001.
Artículo en Inglés | MEDLINE | ID: mdl-11263664

RESUMEN

BACKGROUND: Smad proteins are intracellular mediators of transforming growth factor-beta (TGFbeta) signalling that regulate gene expression by interacting with different classes of transcription factors including DNA-binding multi-zinc finger proteins. One of these, Smad interacting protein 1 (SIP1), is a novel two-handed zinc-finger protein that displays strong similarity with the transcriptional repressor delta-crystallin enhancer binding factor (deltaEF1). Here, we summarize what is known about the mechanism of action of both proteins and their role in vertebrate embryogenesis. Our data are discussed together with the present knowledge on other zinc-finger containing Smad interacting proteins. METHODS: The activities and function of SIP1 have been analysed through documentation of expression patterns, the effect of over-expression of SIP1 on target-gene expression, and promoter studies using Xenopus embryos. Moreover, S1P1/Smad complexes and their association with target promoter DNA were analyzed in biochemical studies. RESULTS: SIP1 is a transcriptional repressor displaying overlapping DNA binding specificities with deltaEF1. An in vivo target of SIP1 in Xenopus is a gene required for the formation of mesoderm, Brachyury (XBra). Our data indicate that SIP1 is required to confine XBra gene expression to the mesoderm. Furthermore, the expression pattern in Xenopus invites us to speculate that SIP1 plays a role in specification/differentiation of neuroectoderm. Unlike deltaEF1, SIP1 can bind directly to activated receptor regulated Smads (R-Smads) and recruit them to the DNA. This indicates that Smads may modulate the activity of SIP1 as a transcriptional repressor. CONCLUSIONS: Our data point to a role of SIP1 in developmental processes regulated by members of the TGFbeta family such as induction of mesoderm (mediated through activin-like signalling) and inhibition of neuroectoderm formation (mediated by bone morphogenetic proteins [BMPs]). Whereas SIP1 could act in TGFbeta signal transduction by virtue of interaction with activated R-Smads, genetic studies in the mouse indicate that deltaEF1 may act in certain TGFbeta pathways-i.e., BMPs and growth and differentiation factors (GDFs)-as well. The molecular mechanisms by which these transcriptional repressors act, as well as the function of the SIP1/Smad interaction, remain to be elucidated. CLINICAL RELEVANCE: Mutations in components of the TGFbeta signalling pathways have been associated with disease and congenital malformations. We anticipate that identification of Smad interacting transcription factors including SIP1 and their targets will help us to understand the molecular basis of certain pathologies.


Asunto(s)
Proteínas de Unión al ADN/fisiología , Proteínas de Homeodominio/fisiología , Proteínas Nucleares/fisiología , Proteínas Represoras/fisiología , Transducción de Señal/fisiología , Transactivadores/fisiología , Factores de Transcripción , Factor de Crecimiento Transformador beta/fisiología , Animales , Proteínas Morfogenéticas Óseas/fisiología , Regulación de la Expresión Génica/fisiología , Humanos , Regiones Promotoras Genéticas , Proteínas Smad , Homeobox 1 de Unión a la E-Box con Dedos de Zinc
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...