RESUMEN
The role of cytosolic stress granules in the integrated stress response has remained largely enigmatic. Here, we studied the functionality of the ubiquitin-proteasome system (UPS) in cells that were unable to form stress granules. Surprisingly, the inability of cells to form cytosolic stress granules had primarily a negative impact on the functionality of the nuclear UPS. While defective ribosome products (DRiPs) accumulated at stress granules in thermally stressed control cells, they localized to nucleoli in stress granule-deficient cells. The nuclear localization of DRiPs was accompanied by redistribution and enhanced degradation of SUMOylated proteins. Depletion of the SUMO-targeted ubiquitin ligase RNF4, which targets SUMOylated misfolded proteins for proteasomal degradation, largely restored the functionality of the UPS in the nuclear compartment in stress granule-deficient cells. Stress granule-deficient cells showed an increase in the formation of mutant ataxin-1 nuclear inclusions when exposed to thermal stress. Our data reveal that stress granules play an important role in the sequestration of cytosolic misfolded proteins, thereby preventing these proteins from accumulating in the nucleus, where they would otherwise infringe nuclear proteostasis.
Asunto(s)
Complejo de la Endopetidasa Proteasomal , Ubiquitina , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina/metabolismo , Gránulos de Estrés , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismoRESUMEN
Due to the inherent toxicity of protein aggregates, the propensity of natural, functional amyloidogenic proteins to aggregate must be tightly controlled to avoid negative consequences on cellular viability. The importance of controlled aggregation in biological processes is illustrated by spidroins, which are functional amyloidogenic proteins that form the basis for spider silk. Premature aggregation of spidroins is prevented by the N-terminal NT domain. Here we explored the potential of the engineered, spidroin-based NT* domain in preventing protein aggregation in the intracellular environment of human cells. We show that the NT* domain increases the soluble pool of a reporter protein carrying a ligand-regulatable aggregation domain. Interestingly, the NT* domain prevents the formation of aggregates independent of its position in the aggregation-prone protein. The ability of the NT* domain to inhibit ligand-regulated aggregation was evident both in the cytosolic and nuclear compartments, which are both highly relevant for human disorders linked to non-physiological protein aggregation. We conclude that the spidroin-derived NT* domain has a generic anti-aggregation activity, independent of position or subcellular location, that is also active in human cells and propose that the NT* domain can potentially be exploited in controlling protein aggregation of disease-associated proteins.
Asunto(s)
Fibroínas , Agregado de Proteínas , Proteínas Amiloidogénicas/metabolismo , Fibroínas/química , Humanos , Concentración de Iones de Hidrógeno , Ligandos , SolubilidadRESUMEN
Amyloid fibrils are mechanically robust and partly resistant to proteolytic degradation, making them potential candidates for scaffold materials in cell culture, tissue engineering, drug delivery and other applications. Such applications of amyloids would benefit from the possibility to functionalize the fibrils, for example by adding growth factors or cell attachment sites. The BRICHOS domain is found in a family of human proteins that harbor particularly amyloid-prone regions and can reduce aggregation as well as toxicity of several different amyloidogenic peptides. Recombinant human (rh) BRICHOS domains have been shown to bind to the surface of amyloid-ß (Aß) fibrils by immune electron microscopy. Here we produce fusion proteins between mCherry and rh Bri2 BRICHOS and show that they can bind to different amyloid fibrils with retained fluorescence of mCherry in vitro as well as in cultured cells. This suggests a "generic" ability of the BRICHOS domain to bind fibrillar surfaces that can be used to synthesize amyloid decorated with different protein functionalities.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Amiloide , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Amiloide/química , Amiloide/fisiología , Péptidos beta-Amiloides/metabolismo , Amiloidosis/etiología , Amiloidosis/genética , Células HeLa , Humanos , Dominios Proteicos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismoRESUMEN
The eukaryotic nucleus remodels extensively during mitosis. Upon mitotic entry, the nuclear envelope breaks down and chromosomes condense into rod-shaped bodies, which are captured by the spindle apparatus and segregated during anaphase. Through telophase, chromosomes decondense and the nuclear envelope reassembles, leading to a functional interphase nucleus. While the molecular processes occurring in early mitosis are intensively investigated, our knowledge about molecular mechanisms of nuclear reassembly is rather limited. Using cell free and cellular assays, we identify the histone variant H2A.Z and its chaperone VPS72/YL1 as important factors for reassembly of a functional nucleus after mitosis. Live-cell imaging shows that siRNA-mediated downregulation of VPS72 extends the telophase in HeLa cells. In vitro, depletion of VPS72 or H2A.Z results in malformed and nonfunctional nuclei. VPS72 is part of two chromatin-remodeling complexes, SRCAP and EP400. Dissecting the mechanism of nuclear reformation using cell-free assays, we, however, show that VPS72 functions outside of the SRCAP and EP400 remodeling complexes to deposit H2A.Z, which in turn is crucial for formation of a functional nucleus.
Asunto(s)
Núcleo Celular/metabolismo , Histonas/metabolismo , Mitosis , Proteínas Represoras/metabolismo , Animales , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina , Secuencia Conservada , Regulación hacia Abajo , Células HeLa , Humanos , Dominios Proteicos , Proteínas Represoras/química , Telofase , XenopusRESUMEN
The mitotic spindle, essential for segregating the sister chromatids into the two evolving daughter cells, is composed of highly dynamic cytoskeletal filaments, the microtubules. The dynamics of microtubules are regulated by numerous microtubule associated proteins. We identify here Developmentally regulated GTP binding protein 1 (DRG1) as a microtubule binding protein with diverse microtubule-associated functions. In vitro, DRG1 can diffuse on microtubules, promote their polymerization, drive microtubule formation into bundles, and stabilize microtubules. HeLa cells with reduced DRG1 levels show delayed progression from prophase to anaphase because spindle formation is slowed down. To perform its microtubule-associated functions, DRG1, although being a GTPase, does not require GTP hydrolysis. However, all domains are required as truncated versions show none of the mentioned activities besides microtubule binding.
Asunto(s)
División Celular , Células Epiteliales/fisiología , Proteínas de Unión al GTP/metabolismo , Microtúbulos/metabolismo , Multimerización de Proteína , Células HeLa , Humanos , Unión ProteicaRESUMEN
Cells have developed highly sophisticated ways to accurately pass on their genetic information to the daughter cells. In animal cells, which undergo open mitosis, the nuclear envelope breaks down at the beginning of mitosis and the chromatin massively condenses to be captured and segregated by the mitotic spindle. These events have to be reverted in order to allow the reformation of a nucleus competent for DNA transcription and replication, as well as all other nuclear processes occurring in interphase. Here, we summarize our current knowledge of how, in animal cells, the highly compacted mitotic chromosomes are decondensed at the end of mitosis and how a nuclear envelope, including functional nuclear pore complexes, reassembles around these decondensing chromosomes.
Asunto(s)
Mitosis/fisiología , Poro Nuclear/fisiología , Animales , Cromatina/fisiología , Cromosomas/fisiología , Humanos , Huso Acromático/fisiologíaRESUMEN
Chromatin undergoes extensive structural changes during the cell cycle. Upon mitotic entry, metazoan chromatin undergoes tremendous condensation, creating mitotic chromosomes with 50-fold greater compaction relative to interphase chromosomes. At the end of mitosis, chromosomes reestablish functional interphase chromatin competent for replication and transcription through a decondensation process that is cytologically well described. However, the underlying molecular events and factors remain unidentified. We describe a cell-free system that recapitulates chromatin decondensation based on purified mitotic chromatin and Xenopus egg extracts. Using biochemical fractionation, we identify RuvB-like ATPases as chromatin decondensation factors and demonstrate that their ATPase activity is essential for decondensation. Our results show that decompaction of metaphase chromosomes is not merely an inactivation of known chromatin condensation factors but rather an active process requiring specific molecular machinery. Our cell-free system provides an important tool for further molecular characterization of chromatin decondensation and its coordination with concomitant processes.