Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
2.
Microbiologyopen ; 13(3): e1410, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38682792

RESUMEN

Escherichia coli serves as a proxy indicator of fecal contamination in aquatic ecosystems. However, its identification using traditional culturing methods can take up to 24 h. The application of DNA markers, such as conserved signature proteins (CSPs) genes (unique to all species/strains of a specific taxon), can form the foundation for novel polymerase chain reaction (PCR) tests that unambiguously identify and detect targeted bacterial taxa of interest. This paper reports the identification of three new highly-conserved CSPs (genes), namely YahL, YdjO, and YjfZ, which are exclusive to E. coli/Shigella. Using PCR primers based on highly conserved regions within these CSPs, we have developed quantitative PCR (qPCR) assays for the evaluation of E. coli/Shigella species in water ecosystems. Both in-silico and experimental PCR testing confirmed the absence of sequence match when tested against other bacteria, thereby confirming 100% specificity of the tested CSPs for E. coli/Shigella. The qPCR assays for each of the three CSPs provided reliable quantification for all tested enterohaemorrhagic and environmental E. coli strains, a requirement for water testing. For recreational water samples, CSP-based quantification showed a high correlation (r > 7, p < 0.01) with conventional viable E. coli enumeration. This indicates that novel CSP-based qPCR assays for E. coli can serve as robust tools for monitoring water ecosystems and other critical areas, including food monitoring.


Asunto(s)
Escherichia coli , Microbiología del Agua , Calidad del Agua , Escherichia coli/genética , Escherichia coli/clasificación , Proteínas de Escherichia coli/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Shigella/genética , Shigella/clasificación , Shigella/aislamiento & purificación , Secuencia Conservada , Monitoreo del Ambiente/métodos , Reacción en Cadena de la Polimerasa/métodos , Heces/microbiología
3.
Environ Microbiome ; 19(1): 4, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38225663

RESUMEN

BACKGROUND: Fecal bacterial densities are proxy indicators of beach water quality, and beach posting decisions are made based on Beach Action Value (BAV) exceedances for a beach. However, these traditional beach monitoring methods do not reflect the full extent of microbial water quality changes associated with BAV exceedances at recreational beaches (including harmful cyanobacteria). This proof of concept study evaluates the potential of metagenomics for comprehensively assessing bacterial community changes associated with BAV exceedances compared to non-exceedances for two urban beaches and their adjacent river water sources. RESULTS: Compared to non-exceedance samples, BAV exceedance samples exhibited higher alpha diversity (diversity within the sample) that could be further differentiated into separate clusters (Beta-diversity). For Beach A, Cyanobacterial sequences (resolved as Microcystis and Pseudanabaena at genus level) were significantly more abundant in BAV non-exceedance samples. qPCR validation supported the Cyanobacterial abundance results from metagenomic analysis and also identified saxitoxin genes in 50% of the non-exceedance samples. Microcystis sp and saxitoxin gene sequences were more abundant on non-exceedance beach days (when fecal indicator data indicated the beach should be open for water recreational purposes). For BAV exceedance days, Fibrobacteres, Pseudomonas, Acinetobacter, and Clostridium sequences were significantly more abundant (and positively correlated with fecal indicator densities) for Beach A. For Beach B, Spirochaetes (resolved as Leptospira on genus level) Burkholderia and Vibrio sequences were significantly more abundant in BAV exceedance samples. Similar bacterial diversity and abundance trends were observed for river water sources compared to their associated beaches. Antibiotic Resistance Genes (ARGs) were also consistently detected at both beaches. However, we did not observe a significant difference or correlation in ARGs abundance between BAV exceedance and non-exceedance samples. CONCLUSION: This study provides a more comprehensive analysis of bacterial community changes associated with BAV exceedances for recreational freshwater beaches. While there were increases in bacterial diversity and some taxa of potential human health concern associated with increased fecal indicator densities and BAV exceedances (e.g. Pseudomonas), metagenomics analyses also identified other taxa of potential human health concern (e.g. Microcystis) associated with lower fecal indicator densities and BAV non-exceedances days. This study can help develop more targeted beach monitoring strategies and beach-specific risk management approaches.

4.
Sci Total Environ ; 912: 168840, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38036144

RESUMEN

CrAssphage or crAss-like phage ranks as the most abundant phage in the human gut and is present in human feces-contaminated environments. Due to its high human specificity and sensitivity, crAssphage is a potentially robust source tracking indicator that can distinguish human fecal contamination from agricultural or wildlife sources. Its suitability in the Great Lakes area, one of the world's most important water systems, has not been well tested. In this study, we tested a qPCR-based quantification method using two crAssphage marker genes (ORF18-mod and CPQ_064) at Toronto recreational beaches along with their adjacent river mouths. Our results showed a 71.4 % (CPQ_064) and 100 % (ORF18-mod) human sensitivity for CPQ_064 and ORF18-mod, and a 100 % human specificity for both marker genes. CrAssphage was present in 57.7 % or 71.2 % of environmental water samples, with concentrations ranging from 1.45 to 5.14 log10 gene copies per 100 mL water. Though concentrations of the two marker genes were strongly correlated, ORF18-mod features a higher human sensitivity and higher positive detection rates in environmental samples. Quantifiable crAssphage was mostly present in samples collected in June and July 2021 associated with higher rainfall. In addition, rivers had more frequent crAssphage presence and higher concentrations than their associated beaches, indicating more frequent and greater human fecal contamination in the rivers. However, crAssphage was more correlated with E. coli and Enterococcus at the beaches than in the rivers, suggesting human fecal sources may be more predominant in driving the increases in E. coli and Enterococcus at the beaches when impacted by river plumes.


Asunto(s)
Monitoreo del Ambiente , Lagos , Humanos , Monitoreo del Ambiente/métodos , Contaminación del Agua/análisis , Escherichia coli/genética , Aguas del Alcantarillado , Microbiología del Agua , Heces , Agua
6.
Front Mol Biosci ; 10: 1120376, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37275959

RESUMEN

Infectious diseases continue to be a major cause of morbidity and mortality worldwide. Diseases cause perturbation of the host's immune system provoking a response that involves genes, proteins and metabolites. While genes are regulated by epigenetic or other host factors, proteins can undergo post-translational modification to enable/modify function. As a result, it is difficult to correlate the disease phenotype based solely on genetic and proteomic information only. Metabolites, however, can provide direct information on the biochemical activity during diseased state. Therefore, metabolites may, potentially, represent a phenotypic signature of a diseased state. Measuring and assessing metabolites in large scale falls under the omics technology known as "metabolomics". Comprehensive and/or specific metabolic profiling in biological fluids can be used as biomarkers of disease diagnosis. In addition, metabolomics together with genomics can be used to differentiate patients with differential treatment response and development of host targeted therapy instead of pathogen targeted therapy where pathogens are more prone to mutation and lead to antimicrobial resistance. Thus, metabolomics can be used for patient stratification, personalized drug formulation and disease control and management. Currently, several therapeutics and in vitro diagnostics kits have been approved by US Food and Drug Administration (FDA) for personalized treatment and diagnosis of infectious diseases. However, the actual number of therapeutics or diagnostics kits required for tailored treatment is limited as metabolomics and personalized medicine require the involvement of personnel from multidisciplinary fields ranging from technological development, bioscience, bioinformatics, biostatistics, clinicians, and biotechnology companies. Given the significance of metabolomics, in this review, we discussed different aspects of metabolomics particularly potentials of metabolomics as diagnostic biomarkers and use of small molecules for host targeted treatment for infectious diseases, and their scopes and challenges in personalized medicine.

7.
Microorganisms ; 11(4)2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-37110273

RESUMEN

Cyanobacteria (blue-green algae) can accumulate to form harmful algal blooms (HABs) on the surface of freshwater ecosystems under eutrophic conditions. Extensive HAB events can threaten local wildlife, public health, and the utilization of recreational waters. For the detection/quantification of cyanobacteria and cyanotoxins, both the United States Environmental Protection Agency (USEPA) and Health Canada increasingly indicate that molecular methods can be useful. However, each molecular detection method has specific advantages and limitations for monitoring HABs in recreational water ecosystems. Rapidly developing modern technologies, including satellite imaging, biosensors, and machine learning/artificial intelligence, can be integrated with standard/conventional methods to overcome the limitations associated with traditional cyanobacterial detection methodology. We examine advances in cyanobacterial cell lysis methodology and conventional/modern molecular detection methods, including imaging techniques, polymerase chain reaction (PCR)/DNA sequencing, enzyme-linked immunosorbent assays (ELISA), mass spectrometry, remote sensing, and machine learning/AI-based prediction models. This review focuses specifically on methodologies likely to be employed for recreational water ecosystems, especially in the Great Lakes region of North America.

8.
Can J Public Health ; 114(4): 676-687, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37069453

RESUMEN

OBJECTIVES: We evaluated the potential impacts from using a rapid same-day quantitative polymerase chain reaction (qPCR) monitoring method for beach posting outcomes at two Toronto beaches. METHODS: In total, 228 water samples were collected at Marie Curtis Park East and Sunnyside Beaches over the 2021 summer season. Water samples were processed using the USEPA 1609.1 Enterococcus qPCR-based method. Escherichia coli (E. coli) culture data and daily beach posting decisions were obtained from Toronto Public Health. RESULTS: No significant correlation was observed between previous-day and same-day (retrospective) E. coli enumeration results at any Sunnyside Beach transect, and only relatively low (R = 0.41-0.56) or no significant correlation was observed at sampling transects for Marie Curtis Park East Beach. Comparing our same-day Enterococcus qPCR data to Toronto's 2-day E. coli geometric mean beach posting decisions, we noted the need for additional postings for 1 (2%) and 3 (8%) missed health-risk days at Sunnyside and Marie Curtis Park East Beaches, respectively. The qPCR data also pointed to incorrect postings for 12 (31%) and 6 (16%) lost beach days at Sunnyside and Marie Curtis Park East Beaches, respectively. CONCLUSION: Application of a rapid Enterococcus qPCR method at two Toronto beaches revealed 5% of beach posting decisions were false negatives that missed health-risk days, while 23% of decisions were false positives resulting in lost beach days. Deployment of the rapid same-day qPCR method offers the potential to reduce both health risks and unnecessary beach postings.


RéSUMé: OBJECTIFS: Nous avons évalué, à deux plages de Toronto, l'effet possible de l'utilisation d'une méthode de surveillance rapide par PCR quantitative (qPCR) le même jour sur les avis de fermeture ou d'ouverture des plages. MéTHODE: En tout, 228 échantillons d'eau ont été prélevés aux plages Marie Curtis Park East et Sunnyside au cours de la saison estivale 2021. La présence d'Enterococcus dans les échantillons a été détectée par la méthode USEPA 1609.1, utilisant la qPCR. Les données sur les cultures d'Escherichia coli (E. coli) et les avis quotidiens de fermeture ou d'ouverture des plages ont été obtenus auprès du Bureau de santé de Toronto. RéSULTATS: Aucune corrélation significative n'a été observée entre les résultats (rétrospectifs) du dénombrement de E. coli obtenus la veille et le même jour dans les transects de la plage Sunnyside, et une corrélation significative faible (R = 0,41­0,56) ou nulle a été observée dans les transects d'échantillonnage de la plage Marie Curtis Park East. En comparant nos données sur Enterococcus obtenues le même jour par qPCR à la moyenne géométrique des avis de fermeture ou d'ouverture des plages sur deux jours liés à E. coli émis par le Bureau de santé de Toronto, nous avons remarqué qu'il aurait fallu émettre des avis de fermeture pour 1 jour de risques pour la santé manqué (2 %) à la plage Sunnyside et pour 3 jours de risques pour la santé manqués (8 %) à la plage Marie Curtis Park East. Les données de la qPCR ont aussi fait état d'avis de fermeture incorrects ayant entraîné la perte de 12 jours de plage (31 %) à Sunnyside et de 6 jours de plage (16 %) à Marie Curtis Park East. CONCLUSION: L'application d'une méthode de surveillance rapide d'Enterococcus par qPCR à deux plages de Toronto a montré que 5 % des avis étaient des faux négatifs qui n'ont pas détecté des jours de risques pour la santé, et que 23 % étaient des faux positifs qui ont entraîné des jours de plage perdus. Le déploiement de la méthode rapide par qPCR le même jour offre la possibilité de réduire à la fois les risques pour la santé et les avis de fermeture de plages inutiles.


Asunto(s)
Enterococcus , Calidad del Agua , Humanos , Enterococcus/genética , Escherichia coli/genética , Salud Pública , Estudios Retrospectivos , Playas , Microbiología del Agua , Heces , Monitoreo del Ambiente/métodos
9.
Microorganisms ; 10(7)2022 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-35889031

RESUMEN

Evolutionary relationships amongst Chlorobia and Ignavibacteria species/strains were examined using phylogenomic and comparative analyses of genome sequences. In a phylogenomic tree based on 282 conserved proteins, the named Chlorobia species formed a monophyletic clade containing two distinct subclades. One clade, encompassing the genera Chlorobaculum, Chlorobium, Pelodictyon, and Prosthecochloris, corresponds to the family Chlorobiaceae, whereas another clade, harboring Chloroherpeton thalassium, Candidatus Thermochlorobacter aerophilum, Candidatus Thermochlorobacteriaceae bacterium GBChlB, and Chlorobium sp. 445, is now proposed as a new family (Chloroherpetonaceae fam. nov). In parallel, our comparative genomic analyses have identified 47 conserved signature indels (CSIs) in diverse proteins that are exclusively present in members of the class Chlorobia or its two families, providing reliable means for identification. Two known Ignavibacteria species in our phylogenomic tree are found to group within a larger clade containing several Candidatus species and uncultured Chlorobi strains. A CSI in the SecY protein is uniquely shared by the species/strains from this "larger Ignavibacteria clade". Two additional CSIs, which are commonly shared by Chlorobia species and the "larger Ignavibacteria clade", support a specific relationship between these two groups. The newly identified molecular markers provide novel tools for genetic and biochemical studies and identification of these organisms.

10.
Int J Mol Sci ; 22(7)2021 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-33806087

RESUMEN

Cockayne syndrome group B protein (CSB), a member of the SWI/SNF superfamily, resides in an elongating RNA polymerase II (RNAPII) complex and regulates transcription elongation. CSB contains a C-terminal winged helix domain (WHD) that binds to ubiquitin and plays an important role in DNA repair. However, little is known about the role of the CSB-WHD in transcription regulation. Here, we report that CSB is dependent upon its WHD to regulate RNAPII abundance at promoter proximal pause (PPP) sites of several actively transcribed genes, a key step in the regulation of transcription elongation. We show that two ubiquitin binding-defective mutations in the CSB-WHD, which impair CSB's ability to promote cell survival in response to treatment with cisplatin, have little impact on its ability to stimulate RNAPII occupancy at PPP sites. In addition, we demonstrate that two cancer-associated CSB mutations, which are located on the opposite side of the CSB-WHD away from its ubiquitin-binding pocket, impair CSB's ability to promote RNAPII occupancy at PPP sites. Taken together, these results suggest that CSB promotes RNAPII association with PPP sites in a manner requiring the CSB-WHD but independent of its ubiquitin-binding activity. These results further imply that CSB-mediated RNAPII occupancy at PPP sites is mechanistically separable from CSB-mediated repair of cisplatin-induced DNA damage.


Asunto(s)
ADN Helicasas/metabolismo , Enzimas Reparadoras del ADN/metabolismo , Reparación del ADN , Regulación de la Expresión Génica , Mutación , Neoplasias/genética , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , ARN Polimerasa II/metabolismo , Línea Celular Tumoral , Supervivencia Celular , Cisplatino/efectos adversos , Cisplatino/farmacología , Daño del ADN/efectos de los fármacos , ADN Helicasas/química , Enzimas Reparadoras del ADN/química , Humanos , Proteínas de Unión a Poli-ADP-Ribosa/química , Regiones Promotoras Genéticas , Unión Proteica , Factores de Transcripción/metabolismo , Ubiquitina/metabolismo
11.
Front Microbiol ; 11: 560099, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33042067

RESUMEN

For many bacteria, successful growth and survival depends on efficient adaptation to rapidly changing conditions. In Escherichia coli, the RpoS alternative sigma factor plays a central role in the adaptation to many suboptimal growth conditions by controlling the expression of many genes that protect the cell from stress and help the cell scavenge nutrients. Neither RpoS or the genes it controls are essential for growth and, as a result, the composition of the regulon and the nature of RpoS control in E. coli strains can be variable. RpoS controls many genetic systems, including those affecting pathogenesis, phenotypic traits including metabolic pathways and biofilm formation, and the expression of genes needed to survive nutrient deprivation. In this review, I review the origin of RpoS and assess recent transcriptomic and proteomic studies to identify features of the RpoS regulon in specific clades of E. coli to identify core functions of the regulon and to identify more specialized potential roles for the regulon in E. coli subgroups.

12.
Sci Prog ; 102(4): 351-376, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31818206

RESUMEN

Conventional microbiological water monitoring uses culture-dependent techniques to screen indicator microbial species such as Escherichia coli and fecal coliforms. With high-throughput, second-generation sequencing technologies becoming less expensive, water quality monitoring programs can now leverage the massively parallel nature of second-generation sequencing technologies for batch sample processing to simultaneously obtain compositional and functional information of culturable and as yet uncultured microbial organisms. This review provides an introduction to the technical capabilities and considerations necessary for the use of second-generation sequencing technologies, specifically 16S rDNA amplicon and whole-metagenome sequencing, to investigate the composition and functional potential of microbiomes found in water and wastewater systems.


Asunto(s)
Bacterias/aislamiento & purificación , ADN Bacteriano/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Aguas Residuales/microbiología , Microbiología del Agua , Bacterias/genética
13.
J Water Health ; 17(3): 393-403, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31095515

RESUMEN

Residents in rural communities across Canada collect potable water from aquifers. Fecal contaminants from sewage and agricultural runoffs can penetrate aquifers, posing a public health risk. Standard methods for detecting fecal contamination test for fecal indicator bacteria (FIB), but the presence of these do not identify sources of contamination. In contrast, DNA-based diagnostic tools can achieve this important objective. We employed quantitative polymerase chain reaction (qPCR) and high-throughput DNA sequencing to trace fecal contamination sources in Wainfleet, a rural Ontario township that has been under the longest active boil water advisory in Canada due to FIB contamination in groundwater wells. Using traditional methods, we identified FIBs indicating persistent fecal pollution in well waters. We used 16S rRNA sequencing to profile groundwater microbial communities and identified Campylobacteraceae as a fecal contamination DNA marker in septic tank effluents (STEs). We also identified Turicibacter and Gallicola as a potential cow and chicken fecal contamination marker, respectively. Using human specific Bacteroidales markers, we identified leaking septic tanks as the likely primary fecal contamination source in some of Wainfleet's groundwater. Overall, the results support the use of sequencing-based methods to augment traditional water quality testing methods and help end-users assess fecal contamination levels and identify point and non-point pollution sources.


Asunto(s)
Monitoreo del Ambiente/métodos , Agua Subterránea/microbiología , Animales , Bacterias , Bovinos , Heces , Femenino , Humanos , Ontario , ARN Ribosómico 16S , Población Rural , Contaminación del Agua
14.
Water Res ; 115: 360-369, 2017 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-28340372

RESUMEN

Recreational waters and adjacent beach sands harbor complex microbial communities which may contain human pathogens that cannot be detected by conventional methods. Here, we investigate the diversity of bacterial populations inhabiting four freshwater beaches of the Great Lakes region using shotgun metagenomic sequencing approach. Our analysis suggests that average taxonomic richness and alpha diversity are significantly higher (P < 0.001) in beach sands compared to the corresponding water environments. Compared to the water environments, beach sands harbored taxa from a more diverse range of phyla, including a higher proportion of sequences from unclassified phyla. Unique phyla were also identified in sand which included species from Aquificae, Candidatus Microgenomates, Latescibacteria, and Candidatus Aminicenantes. Sequences originating from pathogens were detected in both sand and water, with some pathogens enriched in both environments. Both lakes exhibited similar community composition suggesting that geographic location did not appear to have any major impact on bacterial diversity. These findings reveal the diversity of bacterial communities of freshwater beaches and highlight the importance of monitoring pathogens in recreational beaches, especially in the sand environment of these beaches.


Asunto(s)
Playas , Metagenómica , Bacterias/clasificación , Lagos/microbiología , Dióxido de Silicio , Microbiología del Agua
15.
Front Microbiol ; 6: 960, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26441894

RESUMEN

Viruses are the most abundant microorganisms in the aquatic environment, yet the identification of viruses and assessing their diversity still remains a challenge. Here, we present a robust, routinely usable approach to identify viruses from two freshwater lakes of the lower Great Lakes region, Lake Ontario, and Lake Erie. We collected water samples from six different beaches of these two lakes during the summer period of 2012 and 2013, and separated into three distinct fractions, namely a bacterial fraction, a virus like particle (VLP) fraction, and a fraction of eDNA (environmental DNA). DNA extracted from all three fractions was sequenced and bioinformatic analyses of sequences revealed the presence of viruses from major viral families. The analyzed viral sequences were dominated by bacteriophage sequences, but also contained many plant and animal viruses. Within the context of this study, geographic location does not appear to have a major impact on viral abundance and diversity, since virome composition of both lakes were similar. Comparative analyses between eDNA and viral fractions showed that eDNA can be used in combination with VLP fractions to identify viruses from the environment.

16.
Environ Sci Technol ; 48(19): 11462-70, 2014 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-25166281

RESUMEN

Enterohemorrhagic Escherichia coli O157:H7 is responsible for many outbreaks of gastrointestinal illness and hemolytic uremic syndrome worldwide. Monitoring this pathogen in food and water supplies is an important public health issue. Highly conserved genetic markers, which are characteristic for specific strains, can provide direct identification of target pathogens. In this study, we examined a new detection strategy for pathogenic strains of E. coli O157:H7 serotype based on a conserved signature insertion/deletion (CSI) located in the ybiX gene using TaqMan-probe-based quantitative PCR (qPCR). The qPCR assay was linear from 1.0 × 10(2) to 1.0 × 10(7) genome copies and was specific to O157:H7 when tested against a panel of 15 non-O157:H7 E. coli. The assay also maintained detection sensitivity in the presence of competing E. coli K-12, heterologous nontarget DNA spiked in at a 1000-fold and 800-fold excess of target DNA, respectively, demonstrating the assay's ability to detect E. coli O157:H7 in the presence of high levels of background DNA. This study thus validates the use of strain-specific CSIs as a new class of diagnostic marker for pathogen detection.


Asunto(s)
Escherichia coli O157/genética , Escherichia coli O157/aislamiento & purificación , Agua Dulce/microbiología , Reacción en Cadena de la Polimerasa/métodos , Secuencia de Aminoácidos , Bioensayo , Cartilla de ADN/metabolismo , Sondas de ADN/metabolismo , ADN Bacteriano/genética , Proteínas de Escherichia coli/química , Humanos , Datos de Secuencia Molecular , Sensibilidad y Especificidad , Alineación de Secuencia
17.
Photosynth Res ; 122(2): 171-85, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24917519

RESUMEN

Detailed phylogenetic and comparative genomic analyses are reported on 140 genome sequenced cyanobacteria with the main focus on the heterocyst-differentiating cyanobacteria. In a phylogenetic tree for cyanobacteria based upon concatenated sequences for 32 conserved proteins, the available cyanobacteria formed 8-9 strongly supported clades at the highest level, which may correspond to the higher taxonomic clades of this phylum. One of these clades contained all heterocystous cyanobacteria; within this clade, the members exhibiting either true (Nostocales) or false (Stigonematales) branching of filaments were intermixed indicating that the division of the heterocysts-forming cyanobacteria into these two groups is not supported by phylogenetic considerations. However, in both the protein tree as well as in the 16S rRNA gene tree, the akinete-forming heterocystous cyanobacteria formed a distinct clade. Within this clade, the members which differentiate into hormogonia or those which lack this ability were also separated into distinct groups. A novel molecular signature identified in this work that is uniquely shared by the akinete-forming heterocystous cyanobacteria provides further evidence that the members of this group are specifically related and they shared a common ancestor exclusive of the other cyanobacteria. Detailed comparative analyses on protein sequences from the genomes of heterocystous cyanobacteria reported here have also identified eight conserved signature indels (CSIs) in proteins involved in a broad range of functions, and three conserved signature proteins, that are either uniquely or mainly found in all heterocysts-forming cyanobacteria, but generally not found in other cyanobacteria. These molecular markers provide novel means for the identification of heterocystous cyanobacteria, and they provide evidence of their monophyletic origin. Additionally, this work has also identified seven CSIs in other proteins which in addition to the heterocystous cyanobacteria are uniquely shared by two smaller clades of cyanobacteria, which form the successive outgroups of the clade comprising of the heterocystous cyanobacteria in the protein trees. Based upon their close relationship to the heterocystous cyanobacteria, the members of these clades are indicated to be the closest relatives of the heterocysts-forming cyanobacteria.


Asunto(s)
Cianobacterias/clasificación , Cianobacterias/genética , Filogenia , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Secuencia Conservada , Cianobacterias/metabolismo , ADN Bacteriano/genética , Regulación Bacteriana de la Expresión Génica , Datos de Secuencia Molecular
18.
Future Microbiol ; 9(4): 497-507, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24810349

RESUMEN

Bacterial adaptation to suboptimal nutrient environments, including host and/or extreme environments, is subject to complex, coordinated control involving many proteins and RNAs. Among the γ-proteobacteria, which includes many pathogens, the RpoS regulon has been a key focus for many years. Although the RpoS regulator was first identified as a growth phase-dependent regulator, our current understanding of RpoS is now more nuanced as this central regulator also has roles in exponential phase, biofilm development, bacterial virulence and bacterial persistence, as well as in stress adaptation. Induction of RpoS can also exert substantial metabolic effects by negatively regulating key systems including flagella biosynthesis, cryptic phage gene expression and the tricarboxylic acid cycle. Although core RpoS-controlled metabolic functions are conserved, there are substantial differences in RpoS regulation even among closely related bacteria, indicating that regulatory plasticity may be an important aspect of RpoS regulation, which is important in evolutionary adaptation to specialized environments.


Asunto(s)
Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Proteobacteria/genética , Regulón , Factor sigma/metabolismo , Adaptación Fisiológica , Proteobacteria/fisiología , Estrés Fisiológico
19.
J Nutr ; 143(1): 1-11, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23173175

RESUMEN

Dietary antioxidants are essential nutrients that inhibit the oxidation of biologically important molecules and suppress the toxicity of reactive oxygen or nitrogen species. When the total antioxidant capacity is insufficient to quench these reactive species, oxidative damage occurs and contributes to the onset and progression of chronic diseases, such as neurodegenerative diseases, cardiovascular diseases, and cancer. However, epidemiological studies that examine the relationship between antioxidants and disease outcome can only identify correlative associations. Additionally, many antioxidants also have prooxidant effects. Thus, clinically relevant animal models of antioxidant function are essential for improving our understanding of the role of antioxidants in the pathogenesis of complex diseases as well as evaluating the therapeutic potential and risks of their supplementation. Recent progress in gene knockout mice and virus-based gene expression has potentiated these areas of study. Here, we review the current genetically modified animal models of dietary antioxidant function and their clinical relevance in chronic diseases. This review focuses on the 3 major antioxidants in the human body: vitamin C, vitamin E, and uric acid. We examine genetic models of vitamin C synthesis (guinea pig, Osteogenic Disorder Shionogi rat, Gulo(-/-) and SMP30(-/-) mouse mutants) and transport (Slc23a1(-/-) and Slc23a2(-/-) mouse mutants), vitamin E transport (Ttpa(-/-) mouse mutant), and uric acid synthesis (Uox(-/-) mouse mutant). The application of these models to current research goals is also discussed.


Asunto(s)
Antioxidantes/administración & dosificación , Enfermedades Carenciales/fisiopatología , Modelos Animales de Enfermedad , Estrés Oxidativo , Animales , Animales Modificados Genéticamente , Antioxidantes/efectos adversos , Antioxidantes/metabolismo , Antioxidantes/uso terapéutico , Deficiencia de Ácido Ascórbico/dietoterapia , Deficiencia de Ácido Ascórbico/metabolismo , Deficiencia de Ácido Ascórbico/fisiopatología , Enfermedades Carenciales/dietoterapia , Enfermedades Carenciales/metabolismo , Humanos , Ácido Úrico/administración & dosificación , Ácido Úrico/efectos adversos , Ácido Úrico/metabolismo , Ácido Úrico/uso terapéutico , Deficiencia de Vitamina E/dietoterapia , Deficiencia de Vitamina E/metabolismo , Deficiencia de Vitamina E/fisiopatología
20.
Arch Biochem Biophys ; 525(2): 161-9, 2012 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-22381957

RESUMEN

Oxidative stress, through the production of reactive oxygen species, is a natural consequence of aerobic metabolism. Escherichia coli has several major regulators activated during oxidative stress, including OxyR, SoxRS, and RpoS. OxyR and SoxR undergo conformation changes when oxidized in the presence of hydrogen peroxide and superoxide radicals, respectively, and subsequently control the expression of cognate genes. In contrast, the RpoS regulon is induced by an increase in RpoS levels. Current knowledge regarding the activation and function of these regulators and their dependent genes in E. coli during oxidative stress forms the scope of this review. Despite the enormous genomic diversity of bacteria, oxidative stress response regulators in E. coli are functionally conserved in a wide range of bacterial groups, possibly reflecting positive selection of these regulators. SoxRS and RpoS homologs are present and respond to oxidative stress in Proteobacteria, and OxyR homologs are present and function in H(2)O(2) resistance in a range of bacteria, from gammaproteobacteria to Actinobacteria. Bacteria have developed complex, adapted gene regulatory responses to oxidative stress, perhaps due to the prevalence of reactive oxygen species produced endogenously through metabolism or due to the necessity of aerotolerance mechanisms in anaerobic bacteria exposed to oxygen.


Asunto(s)
Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Fenómenos Fisiológicos Bacterianos , Proteínas de Escherichia coli/metabolismo , Genes Bacterianos , Peróxido de Hidrógeno , Modelos Biológicos , Modelos Químicos , Modelos Genéticos , Estrés Oxidativo , Conformación Proteica , Especies Reactivas de Oxígeno , Regulón , Proteínas Represoras/metabolismo , Especificidad de la Especie , Superóxido Dismutasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA