Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Glob Chang Biol ; 30(9): e17503, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39315483

RESUMEN

Increasing tree diversity is considered a key management option to adapt forests to climate change. However, the effect of species diversity on a forest's ability to cope with extreme drought remains elusive. In this study, we assessed drought tolerance (xylem vulnerability to cavitation) and water stress (water potential), and combined them into a metric of drought-mortality risk (hydraulic safety margin) during extreme 2021 or 2022 summer droughts in five European tree diversity experiments encompassing different biomes. Overall, we found that drought-mortality risk was primarily driven by species identity (56.7% of the total variability), while tree diversity had a much lower effect (8% of the total variability). This result remained valid at the local scale (i.e within experiment) and across the studied European biomes. Tree diversity effect on drought-mortality risk was mediated by changes in water stress intensity, not by changes in xylem vulnerability to cavitation. Significant diversity effects were observed in all experiments, but those effects often varied from positive to negative across mixtures for a given species. Indeed, we found that the composition of the mixtures (i.e., the identities of the species mixed), but not the species richness of the mixture per se, is a driver of tree drought-mortality risk. This calls for a better understanding of the underlying mechanisms before tree diversity can be considered an operational adaption tool to extreme drought. Forest diversification should be considered jointly with management strategies focussed on favouring drought-tolerant species.


Asunto(s)
Biodiversidad , Sequías , Bosques , Árboles , Árboles/fisiología , Europa (Continente) , Cambio Climático , Xilema/fisiología
2.
J Trace Elem Med Biol ; 86: 127534, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39303548

RESUMEN

The fruitbodies or sporocarps formed by mushrooms can accumulate mineral elements, such as selenium, zinc or copper, making them an important source of micronutrients essential to humans. However, the literature about environmental factors affecting mineral composition in mushrooms is scarce and limited to the ambiguous impact of soil properties and region. In our study, we investigated the effects of tree stand characteristics (tree species and tree canopy cover), understory cover, and soil properties (pH and C/N ratio of the soil) on the concentration of minerals in six edible mushroom species: Laccaria laccata, L. proxima, L. amethystina, Lepista nuda, Lycoperdon perlatum, and Calvatia excipuliformis, collected on 20 plots covered by stands of different tree species composition and varying in the understory cover. We estimated the concentration of eight elements (Zn, Se, Mg, Mn, Cu, Co, Cr, Mo) using the ICP-MS (Inductively Coupled Plasma - Mass Spectrometry) technique and compared their concentration between the plots, using ordination and linear regression methods. Our research revealed that mushroom species identity, including its ecological role and phylogenetic affinity, had the greatest effect on the mineral composition of mushrooms. The effect of environmental factors depended also on the micronutrient identity. Some elements were not affected at all (Co, Cr), some only by soil reaction or C/N ratio (Mn, Mg, Cu), while others were influenced by both tree stand characteristics and soil properties (Se, Zn, Mo). This knowledge enables us to maximize the content of minerals in harvested mushrooms by collecting them in specific areas. For example, mushrooms, which are sources of Se and Zn, can be gathered in coniferous forests characterized by acid soils, low canopy cover, and minimal understory cover. This targeted collection approach can effectively increase the mineral content in harvested mushrooms, thereby enhancing their health benefits.

3.
New Phytol ; 243(4): 1312-1328, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38934095

RESUMEN

Recent droughts have strongly impacted forest ecosystems and are projected to increase in frequency, intensity, and duration in the future together with continued warming. While evidence suggests that tree diversity can regulate drought impacts in natural forests, few studies examine whether mixed tree plantations are more resistant to the impacts of severe droughts. Using natural variations in leaf carbon (C) and nitrogen (N) isotopic ratios, that is δ13C and δ15N, as proxies for drought response, we analyzed the effects of tree species richness on the functional responses of tree plantations to the pan-European 2018 summer drought in seven European tree diversity experiments. We found that leaf δ13C decreased with increasing tree species richness, indicating less drought stress. This effect was not related to drought intensity, nor desiccation tolerance of the tree species. Leaf δ15N increased with drought intensity, indicating a shift toward more open N cycling as water availability diminishes. Additionally, drought intensity was observed to alter the influence of tree species richness on leaf δ15N from weakly negative under low drought intensity to weakly positive under high drought intensity. Overall, our findings suggest that dual leaf isotope analysis helps understand the interaction between drought, nutrients, and species richness.


Asunto(s)
Biodiversidad , Isótopos de Carbono , Sequías , Isótopos de Nitrógeno , Hojas de la Planta , Estaciones del Año , Árboles , Hojas de la Planta/fisiología , Árboles/fisiología , Isótopos de Carbono/análisis , Europa (Continente) , Especificidad de la Especie
4.
New Phytol ; 243(3): 1205-1219, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38855965

RESUMEN

Decades of studies have demonstrated links between biodiversity and ecosystem functioning, yet the generality of the relationships and the underlying mechanisms remain unclear, especially for forest ecosystems. Using 11 tree-diversity experiments, we tested tree species richness-community productivity relationships and the role of arbuscular (AM) or ectomycorrhizal (ECM) fungal-associated tree species in these relationships. Tree species richness had a positive effect on community productivity across experiments, modified by the diversity of tree mycorrhizal associations. In communities with both AM and ECM trees, species richness showed positive effects on community productivity, which could have resulted from complementarity between AM and ECM trees. Moreover, both AM and ECM trees were more productive in mixed communities with both AM and ECM trees than in communities assembled by their own mycorrhizal type of trees. In communities containing only ECM trees, species richness had a significant positive effect on productivity, whereas species richness did not show any significant effects on productivity in communities containing only AM trees. Our study provides novel explanations for variations in diversity-productivity relationships by suggesting that tree-mycorrhiza interactions can shape productivity in mixed-species forest ecosystems.


Asunto(s)
Biodiversidad , Micorrizas , Árboles , Micorrizas/fisiología , Árboles/microbiología , Especificidad de la Especie
5.
Ecol Lett ; 27(5): e14427, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38698677

RESUMEN

Tree diversity can promote both predator abundance and diversity. However, whether this translates into increased predation and top-down control of herbivores across predator taxonomic groups and contrasting environmental conditions remains unresolved. We used a global network of tree diversity experiments (TreeDivNet) spread across three continents and three biomes to test the effects of tree species richness on predation across varying climatic conditions of temperature and precipitation. We recorded bird and arthropod predation attempts on plasticine caterpillars in monocultures and tree species mixtures. Both tree species richness and temperature increased predation by birds but not by arthropods. Furthermore, the effects of tree species richness on predation were consistent across the studied climatic gradient. Our findings provide evidence that tree diversity strengthens top-down control of insect herbivores by birds, underscoring the need to implement conservation strategies that safeguard tree diversity to sustain ecosystem services provided by natural enemies in forests.


Asunto(s)
Artrópodos , Biodiversidad , Aves , Clima , Conducta Predatoria , Árboles , Animales , Artrópodos/fisiología , Aves/fisiología , Cadena Alimentaria , Larva/fisiología
6.
Mycologia ; 116(3): 381-391, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38573224

RESUMEN

The importance of mushrooms as a food source is continually increasing. To investigate how environmental factors affect the nutritional value of mushrooms, we harvested them in eastern Poland, south-central Germany, and northwestern Belgium in plots with similar environmental conditions but varying in tree species composition and richness. We used gas chromatography-mass spectrometry (GC-MS) to analyze the fatty acid (FA) content of the mushrooms. Fungal species identity explained the largest part (40%) of the total variation in FA concentration and composition. Environmental factors accounted for 1-12% of variation. The concentration of FA, especially saturated fatty acids, decreased with increasing understory cover and increasing nitrogen concentration in the topsoil. The effect of tree species richness or tree species identity was negligible. Our results suggest that the nutritional value of mushrooms depends mainly on the species identity of fungi, but that their FA content is slightly higher in forests with less undergrowth and in nitrogen-poor soils.


Asunto(s)
Agaricales , Ácidos Grasos , Bosques , Cromatografía de Gases y Espectrometría de Masas , Ácidos Grasos/análisis , Agaricales/química , Agaricales/clasificación , Alemania , Polonia , Bélgica , Nitrógeno/análisis , Nitrógeno/metabolismo , Árboles/química , Valor Nutritivo , Suelo/química
7.
Nat Commun ; 15(1): 2078, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38453933

RESUMEN

Plant diversity effects on community productivity often increase over time. Whether the strengthening of diversity effects is caused by temporal shifts in species-level overyielding (i.e., higher species-level productivity in diverse communities compared with monocultures) remains unclear. Here, using data from 65 grassland and forest biodiversity experiments, we show that the temporal strength of diversity effects at the community scale is underpinned by temporal changes in the species that yield. These temporal trends of species-level overyielding are shaped by plant ecological strategies, which can be quantitatively delimited by functional traits. In grasslands, the temporal strengthening of biodiversity effects on community productivity was associated with increasing biomass overyielding of resource-conservative species increasing over time, and with overyielding of species characterized by fast resource acquisition either decreasing or increasing. In forests, temporal trends in species overyielding differ when considering above- versus belowground resource acquisition strategies. Overyielding in stem growth decreased for species with high light capture capacity but increased for those with high soil resource acquisition capacity. Our results imply that a diversity of species with different, and potentially complementary, ecological strategies is beneficial for maintaining community productivity over time in both grassland and forest ecosystems.


Asunto(s)
Biodiversidad , Ecosistema , Plantas , Biomasa , Bosques , Pradera
8.
Ecol Lett ; 27(1): e14336, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38073071

RESUMEN

Biodiversity-ecosystem functioning (BEF) research has provided strong evidence and mechanistic underpinnings to support positive effects of biodiversity on ecosystem functioning, from single to multiple functions. This research has provided knowledge gained mainly at the local alpha scale (i.e. within ecosystems), but the increasing homogenization of landscapes in the Anthropocene has raised the potential that declining biodiversity at the beta (across ecosystems) and gamma scales is likely to also impact ecosystem functioning. Drawing on biodiversity theory, we propose a new statistical framework based on Hill-Chao numbers. The framework allows decomposition of multifunctionality at gamma scales into alpha and beta components, a critical but hitherto missing tool in BEF research; it also allows weighting of individual ecosystem functions. Through the proposed decomposition, new BEF results for beta and gamma scales are discovered. Our novel approach is applicable across ecosystems and connects local- and landscape-scale BEF assessments from experiments to natural settings.


Asunto(s)
Biodiversidad , Ecosistema
9.
Sci Total Environ ; 898: 165543, 2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-37453705

RESUMEN

Many landscapes worldwide are characterized by the presence of a mosaic of forest patches with contrasting age and size embedded in a matrix of agricultural land. However, our understanding of the effects of these key forest patch features on the soil nutrient status (in terms of nitrogen, carbon, and phosphorus) and soil pH is still limited due to a lack of large-scale data. To address this research gap, we analyzed 830 soil samples from nearly 200 forest patches varying in age (recent versus ancient forests) and size (small versus larger patches) along a 2500-km latitudinal gradient across Europe. We also considered environmental covariates at multiple scales to increase the generality of our research, including variation in macroclimate, nitrogen deposition rates, forest cover in a buffer zone, basal area and soil type. Multiple linear mixed-effects models were performed to test the combined effects of patch features and environmental covariates on soil nutrients and pH. Recent patches had higher total soil phosphorus concentrations and stocks in the mineral soil layer, along with a lower nitrogen to phosphorus ratio within that layer. Small patches generally had a higher mineral soil pH. Mineral soil nitrogen stocks were lower in forest patches with older age and larger size, as a result of a significant interactive effect. Additionally, environmental covariates had significant effects on soil nutrients, including carbon, nitrogen, phosphorus, and their stoichiometry, depending on the specific covariates. In some cases, the effect of patch age on mineral soil phosphorus stocks was greater than that of environmental covariates. Our findings underpin the important roles of forest patch age and size for the forest soil nutrient status. Long-term studies assessing edge effects and soil development in post-agricultural forests are needed, especially in a context of changing land use and climate.

10.
Glob Chang Biol ; 29(18): 5321-5333, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36970888

RESUMEN

Carbon-focused climate mitigation strategies are becoming increasingly important in forests. However, with ongoing biodiversity declines we require better knowledge of how much such strategies account for biodiversity. We particularly lack information across multiple trophic levels and on established forests, where the interplay between carbon stocks, stand age, and tree diversity might influence carbon-biodiversity relationships. Using a large dataset (>4600 heterotrophic species of 23 taxonomic groups) from secondary, subtropical forests, we tested how multitrophic diversity and diversity within trophic groups relate to aboveground, belowground, and total carbon stocks at different levels of tree species richness and stand age. Our study revealed that aboveground carbon, the key component of climate-based management, was largely unrelated to multitrophic diversity. By contrast, total carbon stocks-that is, including belowground carbon-emerged as a significant predictor of multitrophic diversity. Relationships were nonlinear and strongest for lower trophic levels, but nonsignificant for higher trophic level diversity. Tree species richness and stand age moderated these relationships, suggesting long-term regeneration of forests may be particularly effective in reconciling carbon and biodiversity targets. Our findings highlight that biodiversity benefits of climate-oriented management need to be evaluated carefully, and only maximizing aboveground carbon may fail to account for biodiversity conservation requirements.


Asunto(s)
Bosques , Árboles , Biodiversidad , Carbono , Clima
12.
Nat Ecol Evol ; 7(2): 214-223, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36624177

RESUMEN

With approximately 60 Pg of carbon (C) released as CO2 annually, the decomposition of dead organic matter feeds the major terrestrial global CO2 flux to the atmosphere. Macroclimate control over this critical C flux facilitates the parametrization of the C cycle in Earth system models and the understanding of climate change effects on the global C balance. Yet, the long-standing paradigm of climate control was recently challenged by the so far underestimated environmental heterogeneity at local scales, questioning the conceptual framework of thousands of decomposition studies and accuracy of current predictive models. Using three complementary decomposition experiments at a European scale, we showed that macroclimate and litter characteristics largely control plant litter decomposition, reaffirming the role of macroclimate as an integrative decomposition driver through direct environmental control and by influencing co-evolving local plant and decomposer communities. Neglecting this latter indirect effect, commonly used standard litter types overrated micro-environmental control and failed to predict local decomposition of plot-specific litter. Our data help clarify a key question on the regulation of the global C cycle by identifying the relative role of control factors over decomposition and the scales at which they matter and by highlighting sources of confusion in the literature.


Asunto(s)
Dióxido de Carbono , Plantas , Carbono , Ciclo del Carbono , Cambio Climático
13.
Glob Chang Biol ; 29(6): 1437-1450, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36579623

RESUMEN

Intensification of land use by humans has led to a homogenization of landscapes and decreasing resilience of ecosystems globally due to a loss of biodiversity, including the majority of forests. Biodiversity-ecosystem functioning (BEF) research has provided compelling evidence for a positive effect of biodiversity on ecosystem functions and services at the local (α-diversity) scale, but we largely lack empirical evidence on how the loss of between-patch ß-diversity affects biodiversity and multifunctionality at the landscape scale (γ-diversity). Here, we present a novel concept and experimental framework for elucidating BEF patterns at α-, ß-, and γ-scales in real landscapes at a forest management-relevant scale. We examine this framework using 22 temperate broadleaf production forests, dominated by Fagus sylvatica. In 11 of these forests, we manipulated the structure between forest patches by increasing variation in canopy cover and deadwood. We hypothesized that an increase in landscape heterogeneity would enhance the ß-diversity of different trophic levels, as well as the ß-functionality of various ecosystem functions. We will develop a new statistical framework for BEF studies extending across scales and incorporating biodiversity measures from taxonomic to functional to phylogenetic diversity using Hill numbers. We will further expand the Hill number concept to multifunctionality allowing the decomposition of γ-multifunctionality into α- and ß-components. Combining this analytic framework with our experimental data will allow us to test how an increase in between patch heterogeneity affects biodiversity and multifunctionality across spatial scales and trophic levels to help inform and improve forest resilience under climate change. Such an integrative concept for biodiversity and functionality, including spatial scales and multiple aspects of diversity and multifunctionality as well as physical and environmental structure in forests, will go far beyond the current widely applied approach in forestry to increase resilience of future forests through the manipulation of tree species composition.


Asunto(s)
Ecosistema , Bosques , Humanos , Filogenia , Biodiversidad , Agricultura Forestal
14.
Sci Total Environ ; 857(Pt 3): 159717, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36302436

RESUMEN

Litter decomposition is a key ecosystem function in forests and varies in response to a range of climatic, edaphic, and local stand characteristics. Disentangling the relative contribution of these factors is challenging, especially along large environmental gradients. In particular, knowledge of the effect of management options, such as tree planting density and species composition, on litter decomposition would be highly valuable in forestry. In this study, we made use of 15 tree diversity experiments spread over eight countries and three continents within the global TreeDivNet network. We evaluated the effects of overstory composition (tree identity, species/mixture composition and species richness), plantation conditions (density and age), and climate (temperature and precipitation) on mass loss (after 3 months and 1 year) of two standardized litters: high-quality green tea and low-quality rooibos tea. Across continents, we found that early-stage decomposition of the low-quality rooibos tea was influenced locally by overstory tree identity. Mass loss of rooibos litter was higher under young gymnosperm overstories compared to angiosperm overstories, but this trend reversed with age of the experiment. Tree species richness did not influence decomposition and explained almost no variation in our multi-continent dataset. Hence, in the young plantations of our study, overstory composition effects on decomposition were mainly driven by tree species identity on decomposer communities and forest microclimates. After 12 months of incubation, mass loss of the high-quality green tea litter was mainly influenced by temperature whereas the low-quality rooibos tea litter decomposition showed stronger relationships with overstory composition and stand age. Our findings highlight that decomposition dynamics are not only affected by climate but also by management options, via litter quality of the identity of planted trees but also by overstory composition and structure.


Asunto(s)
Ecosistema , Árboles , Árboles/química , Hojas de la Planta , Bosques , , Biodiversidad , Suelo/química
15.
Nat Ecol Evol ; 7(2): 236-249, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36376602

RESUMEN

The impact of local biodiversity loss on ecosystem functioning is well established, but the role of larger-scale biodiversity dynamics in the delivery of ecosystem services remains poorly understood. Here we address this gap using a comprehensive dataset describing the supply of 16 cultural, regulating and provisioning ecosystem services in 150 European agricultural grassland plots, and detailed multi-scale data on land use and plant diversity. After controlling for land-use and abiotic factors, we show that both plot-level and surrounding plant diversity play an important role in the supply of cultural and aboveground regulating ecosystem services. In contrast, provisioning and belowground regulating ecosystem services are more strongly driven by field-level management and abiotic factors. Structural equation models revealed that surrounding plant diversity promotes ecosystem services both directly, probably by fostering the spill-over of ecosystem service providers from surrounding areas, and indirectly, by maintaining plot-level diversity. By influencing the ecosystem services that local stakeholders prioritized, biodiversity at different scales was also shown to positively influence a wide range of stakeholder groups. These results provide a comprehensive picture of which ecosystem services rely most strongly on biodiversity, and the respective scales of biodiversity that drive these services. This key information is required for the upscaling of biodiversity-ecosystem service relationships, and the informed management of biodiversity within agricultural landscapes.


Asunto(s)
Biodiversidad , Ecosistema , Agricultura/métodos , Plantas
16.
Nat Commun ; 13(1): 7752, 2022 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-36517483

RESUMEN

Numerous studies have demonstrated that biodiversity drives ecosystem functioning, yet how biodiversity loss alters ecosystems functioning and stability in the long-term lacks experimental evidence. We report temporal effects of species richness on community productivity, stability, species asynchrony, and complementarity, and how the relationships among them change over 17 years in a grassland biodiversity experiment. Productivity declined more rapidly in less diverse communities resulting in temporally strengthening positive effects of richness on productivity, complementarity, and stability. In later years asynchrony played a more important role in increasing community stability as the negative effect of richness on population stability diminished. Only during later years did species complementarity relate to species asynchrony. These results show that species complementarity and asynchrony can take more than a decade to develop strong stabilizing effects on ecosystem functioning in diverse plant communities. Thus, the mechanisms stabilizing ecosystem functioning change with community age.


Asunto(s)
Ecosistema , Pradera , Biodiversidad , Plantas , Biomasa
17.
Glob Chang Biol ; 28(24): 7340-7352, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36062391

RESUMEN

Current climate change aggravates human health hazards posed by heat stress. Forests can locally mitigate this by acting as strong thermal buffers, yet potential mediation by forest ecological characteristics remains underexplored. We report over 14 months of hourly microclimate data from 131 forest plots across four European countries and compare these to open-field controls using physiologically equivalent temperature (PET) to reflect human thermal perception. Forests slightly tempered cold extremes, but the strongest buffering occurred under very hot conditions (PET >35°C), where forests reduced strong to extreme heat stress day occurrence by 84.1%. Mature forests cooled the microclimate by 12.1 to 14.5°C PET under, respectively, strong and extreme heat stress conditions. Even young plantations reduced those conditions by 10°C PET. Forest structure strongly modulated the buffering capacity, which was enhanced by increasing stand density, canopy height and canopy closure. Tree species composition had a more modest yet significant influence: that is, strongly shade-casting, small-leaved evergreen species amplified cooling. Tree diversity had little direct influences, though indirect effects through stand structure remain possible. Forests in general, both young and mature, are thus strong thermal stress reducers, but their cooling potential can be even further amplified, given targeted (urban) forest management that considers these new insights.


Asunto(s)
Cambio Climático , Microclima , Humanos , Temperatura , Europa (Continente)
18.
Nat Commun ; 13(1): 3217, 2022 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-35680926

RESUMEN

Growing threats from extreme climatic events and biodiversity loss have raised concerns about their interactive consequences for ecosystem functioning. Evidence suggests biodiversity can buffer ecosystem functioning during such climatic events. However, whether exposure to extreme climatic events will strengthen the biodiversity-dependent buffering effects for future generations remains elusive. We assess such transgenerational effects by exposing experimental grassland communities to eight recurrent summer droughts versus ambient conditions in the field. Seed offspring of 12 species are then subjected to a subsequent drought event in the glasshouse, grown individually, in monocultures or in 2-species mixtures. Comparing productivity between mixtures and monocultures, drought-selected plants show greater between-species complementarity than ambient-selected plants when recovering from the subsequent drought, causing stronger biodiversity effects on productivity and better recovery of drought-selected mixtures after the drought. These findings suggest exposure to recurrent climatic events can improve ecosystem responses to future events through transgenerational reinforcement of species complementarity.


Asunto(s)
Sequías , Ecosistema , Biodiversidad , Pradera , Plantas , Estaciones del Año
20.
Glob Chang Biol ; 28(10): 3365-3378, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35246895

RESUMEN

Unprecedented tree dieback across Central Europe caused by recent global change-type drought events highlights the need for a better mechanistic understanding of drought-induced tree mortality. Although numerous physiological risk factors have been identified, the importance of two principal mechanisms, hydraulic failure and carbon starvation, is still debated. It further remains largely unresolved how the local neighborhood composition affects individual mortality risk. We studied 9435 young trees of 12 temperate species planted in a diversity experiment in 2013 to assess how hydraulic traits, carbon dynamics, pest infestation, tree height and neighborhood competition influence individual mortality risk. Following the most extreme global change-type drought since record in 2018, one third of these trees died. Across species, hydraulic safety margins (HSMs) were negatively and a shift towards a higher sugar fraction in the non-structural carbohydrate (NSC) pool positively associated with mortality risk. Moreover, trees infested by bark beetles had a higher mortality risk, and taller trees a lower mortality risk. Most neighborhood interactions were beneficial, although neighborhood effects were highly species-specific. Species that suffered more from drought, especially Larix spp. and Betula spp., tended to increase the survival probability of their neighbors and vice versa. While severe tissue dehydration marks the final stage of drought-induced tree mortality, we show that hydraulic failure is interrelated with a series of other, mutually inclusive processes. These include shifts in NSC pools driven by osmotic adjustment and/or starch depletion as well as pest infestation and are modulated by the size and species identity of a tree and its neighbors. A more holistic view that accounts for multiple causes of drought-induced tree mortality is required to improve predictions of trends in global forest dynamics and to identify mutually beneficial species combinations.


Asunto(s)
Sequías , Bosques , Carbono , Deshidratación , Europa (Continente) , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...