RESUMEN
The unfolding of a sheared mechanically mixed third-body (TB) in tungsten/tungsten carbide sliding systems is studied using a combination of experiments and simulations. Experimentally, the topographical evolution and the friction response, for both dry and lubricated sliding, are investigated using an online tribometer. Ex situ X-ray photoelectron spectroscopy, transmission electron microscopy, and cross-sectional focused ion beam analysis of the structural and chemical changes near the surfaces show that dry sliding of tungsten against tungsten carbide results in plastic deformation of the tungsten surface, leading to grain refinement, and the formation of a mechanically mixed layer on the WC counterface. Sliding with hexadecane as a lubricant results in a less pronounced third-body formation due to much lower dissipated frictional power. Molecular dynamics simulations of the sliding couples predict chemical changes near the surface in agreement with the interfacial processes observed experimentally. Finally, online topography measurements demonstrate an excellent correlation between the evolution of the roughness and the frictional resistance during sliding.
RESUMEN
Design of attachment devices in insects varies enormously in relation to different functional loads. Many systems, located on different parts of the body, involve surfaces with particular frictional properties. Such systems evolved to attach parts of the body to each other, or to attach an insect to the substratum by providing fast and reversible attachment/detachment. Among these systems, there are some that deal with predefined surfaces, and others, in which one surface remains unpredictable. The first type of system occurs, for example, in wing-locking devices and head-arresting systems and is called probabilistic fasteners. The second type is mainly represented by insect attachment pads of two alternative designs: hairy and smooth. The relationship between surface patterns and/or mechanical properties of materials of contact pairs results in two main working principles of the frictional devices: mechanical interlocking, or maximization of the contact area. We give an overview of the functional design of two main groups of friction-based attachment devices in insects: probabilistic fasteners and attachment pads.